

SOA with REST
Principles, Patterns & Constraints

for Building Enterprise Solutions with REST

Prentice Hall

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Thomas Erl, Benjamin Carlyle,
Cesare Pautasso, and Raj Balasubramanian

00_9780137012510_FM .indd 7 7/5/12 5:22 PM

35_9780137012510_ifc-ibc.indd 2 7/5/12 4:56 PM

Contents at a Glance
Foreword . . xxix

Chapter 1: Introduction . 1

Chapter 2: Case Study Background . 13

Part I: Fundamentals
Chapter 3: Introduction to Services . 23

Chapter 4: SOA Terminology and Concepts . 31

Chapter 5: REST Constraints and Goals . 51

Part II: RESTful Service-Orientation
Chapter 6: Service Contracts with REST . 67

Chapter 7: Service-Orientation with REST . 93

Part III: Service-Oriented Analysis and Design with REST
Chapter 8: Mainstream SOA Methodology and REST . 127

Chapter 9: Analysis and Service Modeling with REST . 139

Chapter 10: Service-Oriented Design with REST . 173

Part IV: Service Composition with REST
Chapter 11: Fundamental Service Composition with REST 231

Chapter 12: Advanced Service Composition with REST . 261

Chapter 13: Service Composition with REST Case Study 305

Part V: Supplemental
Chapter 14: Design Patterns for SOA with REST . . 327

Chapter 15: Service Versioning with REST . 343

Chapter 16: Uniform Contract Profiles . 361

Part VI: Appendices
Appendix A: Case Study Conclusion . 383

Appendix B: Industry Standards Supporting the Web . 387

Appendix C: REST Constraints Reference . 391

Appendix D: Service-Orientation Principles Reference . 409

Appendix E: SOA Design Patterns Reference . 425

Appendix F: State Concepts and Types . 521

Appendix G: The Annotated SOA Manifesto . 533

Appendix H: Additional Resources . 547

About the Authors . 553

About the Pattern Co-Contributors . 555

About the Foreword Contributor . 557

Index . 559

00_9780137012510_FM .indd 11 7/5/12 5:22 PM

Chapter 10

Service-Oriented Design with REST

10.1  Uniform Contract Design Considerations

10.2  REST Service Contract Design

10.3  Complex Method Design

13_9780137012510_ch10.indd 173 7/5/12 4:35 PM

Principles, Patterns, and Constraints
Referenced in This Chapter:

	 •	 Atomic Transaction [432]

	 •	 Cache {398}

	 •	 Canonical Expression [434]

	 •	 Canonical Schema [437]

	 •	 Entity Abstraction [463]

	 •	 Event-Driven Messaging [465]

	 •	 Idempotent Capability [470]

	 •	 Layered System {404}

	 •	 Legacy Wrapper [473]

	 •	 Logic Centralization [475]

	 •	 Process Abstraction [486]

	 •	 Service Abstraction (414)

	 •	 Service Discoverability (420)

	 •	 Service Loose Coupling (413)

	 •	 Stateless {395}

	 •	 Uniform Contract {400}

	 •	 Utility Abstraction [517]

	 •	 Validation Abstraction [518]

13_9780137012510_ch10.indd 174 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 175

Using the conceptual service candidates modeled during the preceding service-oriented
analysis process as a starting point, service-oriented design is dedicated to the physical
design of service contracts. When it comes to contract design with REST, we need to be
concerned with two particular areas:

	 1.	 The design of a uniform contract for a service inventory.

	 2.	 The design of individual service contracts within the service inventory and in
compliance with the uniform contract.

The uniform contract needs to be firmly established before we begin creating service
contracts that will be required to form dependencies on uniform contract features. As
a service inventory grows and evolves, new services can still influence the design of a
uniform contract, but uniform contract features are generally changed and added at a
very deliberate pace.

Following the preceding sequence, this chapter begins with coverage of uniform con-
tract design topics and then moves on to topics that pertain to the design of REST ser-
vice contracts. The chapter concludes with a section on complex methods, an optional
field of REST contract design and one suitable mainly for use within controlled environ-
ments, such as internal service inventories.

10.1  Uniform Contract Design Considerations

When creating a uniform contract for a service inventory, we have a responsibility to
equip and limit its features so that it is streamlined to effectively accommodate require-
ments and restrictions unique to the service inventory. The default characteristics of
Web-centric technology architecture can provide an effective basis for a service inven-
tory’s uniform contract, although additional forms of standardization and customiza-
tion are likely to be required for non-trivial service inventory architectures.

The following sections explore how common elements of a uniform contract (methods,
media types, and exceptions in particular) can be customized to meet the needs of indi-
vidual service inventories.

Designing and Standardizing Methods

When we discuss methods in relation to the uniform contract, it is considered short-
hand for a request-response communications mechanism that also includes meth-
ods, headers, response codes, and exceptions. Methods are centralized as part of the

13_9780137012510_ch10.indd 175 7/5/12 4:36 PM

176	 Chapter 10: Service-Oriented Design with REST

uniform contract in order to ensure that there are always a small number of ways of
moving information around within a particular service inventory, and that existing
service consumers will work correctly with new or modified services as they are added
to the inventory. Whereas it is important to minimize the number of methods in the
uniform contract, methods can and should be added when service inventory interac-
tion requirements demand it. This is a natural part of evolving a service inventory in
response to business change.

HTTP provides a solid foundation by sup-
plying the basic set of methods (such as
GET, PUT, DELETE, POST) proven by use on
the Web and widely supported by off-the-
shelf software components and hardware
devices. But the need may arise to express
other types of interactions for a service
inventory. For example, you may decide to
add a special method that can be used to
reliably trigger a resource to execute a task
at most once, rather than using the less reli-
able HTTP POST method.

HTTP is designed to be extended in these
ways. The HTTP specification explicitly sup-
ports the notion of extension methods, cus-
tomized headers, and extensibility in other
areas. Leveraging this feature of HTTP can
be effective, as long as new extensions are
added carefully and at a rate appropriate for
the number of services that implement HTTP within an inventory. This way, the total
number of options for moving data around (that services and consumers are required
to understand) remains manageable.

Note

Later in this chapter we explore a set of sample, extended methods
(referred to as complex methods), each of which utilizes multiple basic
HTTP methods or utilizes a single basic HTTP method multiple times, to
perform pre-defined, standardized interactions.

Less well-known HTTP methods
have come and gone in the past.
For example, at various times the
HTTP specification has included
a PATCH method consistent with
a partial update or partial store
communications mechanism.
PATCH is currently specified
separately from HTTP methods
in the IETF’s RFC 5789 document.
Other IETF specifications, such
as WebDAV’s RFC 4918 and the
Session Initiation Protocol’s RFC
3261, introduced new methods as
well as new headers and response
codes (or special interpretations
thereof).

13_9780137012510_ch10.indd 176 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 177

Common circumstances that can warrant the creation of new methods include:

	 •	 Hyperlinks may be used to facilitate a sequence of request-response pairs. When
they start to read like verbs instead of nouns and tend to suggest that only a
single method will be valid on the target of a hyperlink, we can consider introduc-
ing a new method instead. For example the “customer” hyperlink for an invoice
resource suggests that GET and PUT requests might be equally valid for the
customer resource. But a “begin transaction” hyperlink or a “subscribe” hyperlink
suggest only POST is valid and may indicate the need for a new method instead.

	 •	 Data with must-understand semantics may be needed within message headers. In
this case, a service that ignores this metadata can cause incorrect runtime behav-
ior. HTTP does not include a facility for identifying individual headers or informa-
tion within headers as “must-understand.” A new method can be used to enforce
this requirement because the custom method will be automatically rejected by
a service that doesn’t understand the request (whereas falling back on a default
HTTP method will allow the service to ignore the new header information).

It is important to acknowledge that introducing custom methods can have negative
impacts when exploring vendor diversity within an implementation environment. It
may prevent off-the-shelf components (such as caches, load balancers, firewalls, and
various HTTP-based software frameworks) from being fully functional within the
service inventory. Stepping away from HTTP and its default methods should only be
attempted in mature service inventories when the effects on the underlying technology
architecture and infrastructure are fully understood.

Some alternatives to creating new methods can also be explored. For example, service
interactions that require a number of steps can use hyperlinks to guide consumers
through the requests they need to make. The HTTP Link header (RFC 5988) can be con-
sidered to keep these hyperlinks separate from the actual document content.

Designing and Standardizing HTTP Headers

Exchanging messages with metadata is common in service-oriented solution design.
Because of the emphasis of composing a set of services together to collectively automate
a given task at runtime, there is often a need for a message to provide a range of header
information that pertains to how the message should be processed by intermediary
service agents and services along its message path.

13_9780137012510_ch10.indd 177 7/5/12 4:36 PM

178	 Chapter 10: Service-Oriented Design with REST

Built-in HTTP headers can be used in a number of ways:

	 •	 They can be used to add parameters related to a request method as an alternative
to using query strings to represent the parameters within the URL. For example,
the Accept header can supplement the GET method by providing content negotia-
tion data.

	 •	 They can be used to add parameters related to a response code. For example the
Location header can be used with the 201 Created response code to indicate the
identifier of a newly created resource.

	 •	 They can be used to communicate general information about the service or
consumer. For example the Upgrade header can indicate that a service consumer
supports and prefers a different protocol, while the Referrer header can indicate
which resource the consumer came from while following a series of hyperlinks.

This type of general metadata may be used in conjunction with any HTTP method.

HTTP headers can also be utilized to add rich metadata. For this purpose custom head-
ers are generally required, which re-introduces the need to determine whether or not
the message content must be understood by recipients or whether it can optionally be
ignored. This association of must-understand semantics with new methods and must-
ignore semantics with new message headers is not an inherent feature of REST, but it is
a feature of HTTP.

When introducing custom HTTP headers that can be ignored by services, regular HTTP
methods can safely be used. This also makes the use of custom headers backwards-
compatible when creating new versions of existing message types.

As previously stated in the Designing and Standardizing Methods section, new HTTP
methods can be introduced to enforce must-understand content by requiring services
to either be designed to support the custom method or to reject the method invocation
attempt altogether. In support of this behavior, a new Must-Understand header can be
created in the same format as the existing Connection header, which would list all of
the headers that need to be understood by message recipients.

If this type of modification is made to HTTP, it would be the responsibility of the SOA
Governance Program Office responsible for the service inventory to ensure that these
semantics are implemented consistently as part of inventory-wide design standards. If
custom, must-understand HTTP headers are successfully established within a service
inventory, we can explore a range of applications of messaging metadata. For example,

13_9780137012510_ch10.indd 178 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 179

we can determine whether it is possible or feasible to emulate messaging metadata such
as what is commonly used in SOAP messaging frameworks based on WS-* standards.

While custom headers that enforce reliability or routing content (as per the WS-
ReliableMessaging and WS-Addressing standards) can be added to recreate acknowl-
edgement and intelligent load balancing interactions, other forms of WS-* functions are
subject to built-in limitations of the HTTP protocol. The most prominent example is the
use of WS-Security to enable message-level security features, such as encryption and
digital signatures. Message-level security protects messages by actually transforming
the content so that intermediaries along a message path are unable to read or alter mes-
sage content. Only those message recipients with prior authorization are able to access
the content.

This type of message transformation is not supported in HTTP/1.1. HTTP does have
some basic features for transforming the body of the message alone through its
Content-Encoding header, but this is generally limited to compression of the message
body and does not include the transformation of headers. If this feature was used for
encryption purposes the meaning of the message could still be modified or inspected
in transit, even though the body part of the message could be protected. Message sig-
natures are also not possible in HTTP/1.1 as there is no canonical form for an HTTP
message to sign, and no industry standard that determines what modifications interme-
diaries would be allowed to make to such a message.

Designing and Standardizing HTTP Response Codes

HTTP was originally designed as a synchronous, client-server protocol for the exchange
of HTML pages over the World Wide Web. These characteristics are compatible with
REST constraints and make it also suitable as a protocol used to invoke REST service
capabilities.

Developing a service using HTTP is very similar to publishing dynamic content on a
Web server. Each HTTP request invokes a REST service capability and that invocation
concludes with the sending of a response message back to the service consumer.

A given response message can contain any one of a wide variety of HTTP codes, each
of which has a designated number. Certain ranges of code numbers are associated with
particular types of conditions, as follows:

	 •	 100-199 are informational codes used as low level signaling mechanisms, such as
a confirmation of a request to change protocols.

13_9780137012510_ch10.indd 179 7/5/12 4:36 PM

180	 Chapter 10: Service-Oriented Design with REST

	 •	 200-299 are general success codes used to describe various kinds of success
conditions.

	 •	 300-399 are redirection codes used to request that the consumer retry a request to
a different resource identifier, or via a different intermediary.

	 •	 400-499 represent consumer-side error codes that indicate that the consumer has
produced a request that is invalid for some reason.

	 •	 500-599 represent service-side error codes that indicate that the consumer’s
request may have been valid but that the service has been unable to process it for
internal reasons.

The consumer-side and service-side exception categories are helpful for “assigning
blame,” but do little to actually enable service consumers to recover from failure. This
is because, while the codes and reasons provided by HTTP are standardized, how ser-
vice consumers are required to behave upon receiving response codes is not. When
standardizing service design for a service inventory, it is necessary to establish a set of
conventions that assign response codes concrete meaning and treatment.

Table 10.1 provides common descriptions of how service consumers can be designed to
respond to common response codes.

Response Code Reason Phrase Treatment

100 Continue Indeterminate

101 Switching Protocols Indeterminate

1xx Any other 1xx code Failure

200 OK Success

201 Created Success

202 Accepted Success

203 Non-Authoritative
Information

Success

204 No Content Success

13_9780137012510_ch10.indd 180 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 181

Response Code Reason Phrase Treatment

205 Reset Content Success

206 Partial Content Success

2xx Any other 2xx code Success

300 Multiple Choices Failure

301 Moved Permanently Indeterminate

(Common Behavior:
Modify resource identifier

and retry.)

302 Found Indeterminate

(Common Behavior:
Change request to a GET and

retry using nominated resource
identifier.)

303 See Other

304 Not Modified Success

(Common Behavior:
Use cached response.)

305 Use Proxy Indeterminate

(Common Behavior:
Connect to identified proxy and

resend original message.)

307 Temporary Redirect Indeterminate

(Common Behavior:
Retry once to nominated resource

identifier.)

3xx Any other 3xx code Failure

400 Bad Request Failure

continues

13_9780137012510_ch10.indd 181 7/5/12 4:36 PM

182	 Chapter 10: Service-Oriented Design with REST

Response Code Reason Phrase Treatment

401 Unauthorized Indeterminate

(Common Behavior:
Retry with correct credentials.)

402 Payment Required Failure

403 Forbidden Failure

404 Not Found Success if request was DELETE,
else Failure

405 Method Not Allowed Failure

406 Not Acceptable Failure

407 Proxy Authentication Required Indeterminate

(Common Behavior:
Retry with correct credentials.)

408 Request Timeout Failure

409 Conflict Failure

410 Gone Success if request was DELETE,
else Failure

411 Length Required Failure

412 Precondition Failed Failure

413 Request Entity Too Large Failure

414 Request-URI Too Long Failure

415 Unsupported Media Type Failure

416 Requested Range
Not Satisfiable

Failure

417 Expectation Failed Failure

13_9780137012510_ch10.indd 182 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 183

Response Code Reason Phrase Treatment

4xx Any other 4xx code Failure

500 Internal Server Error Failure

501 Not Implemented Failure

502 Bad Gateway Failure

503 Service Unavailable Repeat if Retry-After header is
specified. Otherwise, Failure.

504 Gateway Timeout Repeat if request is idempotent.
Otherwise, Failure.

505 HTTP Version
Not Supported

Failure

5xx Any other 5xx code Failure

Table 10.1
HTTP response codes, and typical corresponding consumer behavior.

As is evident when reviewing Table 10.1, HTTP response codes go well beyond the sim-
ple distinction between success and failure. They provide an indication of how consum-
ers can respond to and recover from exceptions.

Let’s take a closer look at some of the values from the Treatment column in Table 10.1:

	 •	 Repeat means that the consumer is encouraged to repeat the request, taking into
account any delay specified in responses such as 503 Service Unavailable. This
may mean sleeping before trying again. If the consumer chooses not to repeat the
request, it must treat the method as failed.

	 •	 Success means the consumer should treat the message transmission as a success-
ful action and must therefore not repeat it. (Note that specific success codes may
require more subtle interpretation.)

	 •	 Failed means that the consumer must not repeat the request unchanged, although
it may issue a new request that takes the response into account. The consumer
should treat this as a failed method if a new request cannot be generated. (Note
that specific failure codes may require more subtle interpretation.)

13_9780137012510_ch10.indd 183 7/5/12 4:36 PM

184	 Chapter 10: Service-Oriented Design with REST

	 •	 Indeterminate means that the consumer needs to modify its request in the manner
indicated. The request must not be repeated unchanged and a new request that
takes the response into account should be generated. The final outcome of the
interaction will depend on the new request. If the consumer is unable to generate
a new request, then this code must be treated as failed.

Because HTTP is a protocol, not a set of message processing logic, it is up to the service
to decide what status code (success, failure, or otherwise) to return. As previously men-
tioned, because consumer behavior is not always sufficiently standardized by HTTP for
machine-to-machine interactions, it needs to be explicitly and meaningfully standard-
ized as part of an SOA project.

For example, indeterminate codes tend to indicate that service consumers must handle
a situation using their own custom logic. We can standardize these types of codes in
two ways:

	 •	 Design standards can determine which indeterminate codes can and cannot be
issued by service logic.

	 •	 Design standards can determine how service consumer logic must interpret those
indeterminate codes that are allowed.

Customizing Response Codes

The HTTP specification allows for extensions to response codes. This extension feature
is primarily there to allow future versions of HTTP to introduce new codes. It is also
used by some other specifications (such as WebDAV) to define custom codes. This is
typically done with numbers that are not likely to collide with new HTTP codes, which
can be achieved by putting them near the end of the particular range (for example, 299
is unlikely to ever be used by the main HTTP standard).

Specific service inventories can follow this approach by introducing custom response
codes as part of the service inventory design standards. In support of the Uniform Con-
tract {400} constraint, custom response codes should only be defined at the uniform
contract level, not at the REST service contract level.

When creating custom response codes, it is important that they be numbered based on
the range they fall in. For example, 2xx codes should be communicating success, while
4xx codes should only represent failure conditions.

13_9780137012510_ch10.indd 184 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 185

Additionally, it is good practice to standardize the insertion of human-readable content
into the HTTP response message via the Reason Phrase. For example, the code 400 has a
default reason phrase of “Bad Request.” This is enough for a service consumer to handle
the response as a general failure, but it doesn’t tell a human anything useful about the
actual problem. Setting the reason phrase to “The service consumer request is missing
the Customer address field.” or perhaps even “Request body failed validation against
schema http://example.com/customer” is more helpful, especially when reviewing
logs of exception conditions that may not have the full document attached.

Consumers can associate generic logic to handle response codes in each of these ranges,
but may also need to associate specific logic to specific codes. Some codes can be lim-
ited so that they are only generated if the consumer requests a special feature of HTTP,
which means that some codes can be left unimplemented by consumers that do not
request these features.

Uniform contract exceptions are generally standardized within the context of a particu-
lar new type of interaction that is required between services and consumers. They will
typically be introduced along with one or more new methods and/or headers. This con-
text will guide the kind of exceptions that are created. For example, it may be necessary
to introduce a new response code to indicate that a request cannot be fulfilled due to a
lock on a resource. (WebDAV provides the 423 Locked code for this purpose.)

When introducing and standardizing custom response codes for a service inventory
uniform contract we need to ensure that:

	 •	 each custom code is appropriate and absolutely necessary

	 •	 the custom code is generic and highly reusable by services

	 •	 the extent to which service consumer behavior is regulated is not too restrictive so
that the code can apply to a large range of potential situations

	 •	 code values are set to avoid potential collision with response codes from relevant
external protocol specifications

	 •	 code values are set to avoid collision with custom codes from other service inven-
tories (in support of potential cross-service inventory message exchanges that may
be required)

Response code numeric ranges can be considered a form of exception inheritance. Any
code within a particular range is expected to be handled by a default set of logic, just as
if the range were the parent type for each exception within that range.

13_9780137012510_ch10.indd 185 7/5/12 4:36 PM

186	 Chapter 10: Service-Oriented Design with REST

In this section, we have briefly explored response codes within the context of HTTP.
However, it is worth noting that REST can be applied with other protocols (and other
exception models). It is ultimately the base protocol of a service inventory architecture
that will determine how normal and exceptional conditions are reported.

For example, you could consider having a REST-based service inventory standardized
on the use of SOAP messages that result in SOAP-based exceptions instead of HTTP
exception codes. This allows the response code ranges to be substituted for inheritance
of exceptions.

Designing Media Types

During the lifetime of a service inventory architecture we can expect more changes
will be required to the set of a uniform contract’s media types than to its methods. For
example, a new media type will be required whenever a service or consumer needs to
communicate machine-readable information that does not match the format or schema
requirements of any existing media type.

Some common media types from the Web to consider for service inventories and ser-
vice contracts include:

	 •	 text/plain; charset=utf-8 for simple representations, such as integer and
string data. Primitive data can be encoded as strings, as per built-in XML Schema
data types.

	 •	 application/xhtml+xml for more complex lists, tables, human-readable text,
hypermedia links with explicit relationship types, and additional data based on
microformats.org and other specifications.

	 •	 text/uri-list for plain lists of URIs.

	 •	 application/atom+xml for feeds of human-readable event information or other
data collections that are time-related (or time ordered).

More standard media types can be found in the IANA media type registry, as explained
in Appendix B. Before inventing new media types for use within a service inventory, it
is advisable to first carry out a search of established industry media types that may be
suitable.

Whether choosing existing media types or creating custom ones, it is helpful to con-
sider the following best practices:

13_9780137012510_ch10.indd 186 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 187

	 •	 Each specific media type should ideally be specific to a schema. For exam-
ple, application/xml or application/json are not schema-specific, while
application/atom+xml used as a syndication format is specific enough to be
useful for content negotiation and to identify how to process documents.

	 •	 Media types should be abstract in that they specify only as much information as
their recipients need to extract via their schemas. Keeping media types abstract
allows them to be reused within more service contracts.

	 •	 New media types should reuse mature vocabularies and concepts from industry
specifications whenever appropriate. This reduces the risk that key concepts have
been missed or poorly constructed, and further improves compatibility with other
applications of the same vocabularies.

	 •	 A media type should include a hyperlink whenever it needs to refer to a related
resource whose representation is located outside the immediate document. Link
relation types may be defined by the media type’s schema or, in some cases, sepa-
rately, as part of a link relation profile.

	 •	 Custom media types should be defined with must-ignore semantics or other
extension points that allow new data to be added to future versions of the media
type without old services and consumers rejecting the new version.

	 •	 Media types should be defined with standard processing instructions that
describe how a new processor should handle old documents that may be miss-
ing some information. Usually these processing instructions ensure that earlier
versions of a document have compatible semantics. This way, new services and
consumers do not have to reject the old versions.

All media types that are either invented for a particular service inventory or reused
from another source should be documented in the uniform contract profile, alongside
the definition of uniform methods.

HTTP uses Internet media type identifiers that conform to a specific syntax. Custom
media types are usually identified with the notation:

application/vnd.organization.type+supertype

…where application is a common prefix that indicates that the type is used for
machine consumption and standards. The organization field identifies the vendor
namespace, which can optionally be registered with IANA.

13_9780137012510_ch10.indd 187 7/5/12 4:36 PM

188	 Chapter 10: Service-Oriented Design with REST

The type part is a unique name for the media type within the organization, while the
supertype indicates that this type is a refinement of another media type. For example,
application/vnd.com.examplebooks.purchase-order+xml may indicate that:

	 •	 the type is meant for machine consumption

	 •	 the type is vendor-specific, and the organization that has defined the type is
“examplebooks.com”

	 •	 the type is for purchase orders (and may be associated with a canonical Purchase
Order XML schema)

	 •	 the type is derived from XML, meaning that recipients can unambiguously handle
the content with XML parsers

Types meant for more general inter-organizational use can be defined with the media
type namespace of the organization ultimately responsible for defining the type.
Alternatively, they can be defined without the vendor identification information in
place by registering each type directly, following the process defined in the RFC 4288
specification.

Designing Schemas for Media Types

Within a service inventory, most custom media types created to represent business data
and documents will be defined together with XML schemas. This essentially applies
the Canonical Schema [437] pattern in that it establishes a set of standardized data mod-
els that are reused by REST services within the inventory to whatever extent feasible.

For this to be successful, especially with larger collections of services, schemas need
to be designed to be flexible. This means that it is generally preferable for schemas to
enforce a coarse level of validation constraint granularity that allows each schema to be
applicable for use with a broader range of data interaction requirements.

REST requires media types and their schemas to be defined only at the uniform contract
level. If a service capability requires a unique data structure for a response message,
it must still use one of the canonical media types provided by the uniform contract.
Designing schemas to be flexible and weakly typed can accommodate a variety of
service-specific message exchange requirements.

13_9780137012510_ch10.indd 188 7/5/12 4:36 PM

10.1  Uniform Contract Design Considerations	 189

Note

To explore techniques for weakly typing XML Schema definitions, see
Chapters 6, 12, and 13 in the book Web Service Contract Design & Ver-
sioning for SOA, as well as the description for the Validation Abstraction
[518] pattern.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.com/schema/po"
 xmlns="http://example.com/schema/po">
 <xsd:element name="LineItemList" type="LineItemListType"/>
 <xsd:complexType name="LineItemListType">
 <xsd:element name="LineItem" type="LineItemType"
 minOccurs="0"/>
 </xsd:complexType>
 <xsd:complexType name="LineItemType">
 <xsd:sequence>
 <xsd:element name="productID" type="xsd:anyURI"/>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="available" type="xsd:boolean"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 10.1

One of the most straightforward ways of making a media type more reusable is to
design the schema to support a list of zero or more items. This enables the media type
to permit one instance of the underlying type, but also allows queries that return zero
or more instances. Making individual elements within the document optional can also
increase reuse potential.

Service-Specific XML Schemas

It is technically possible for individual REST service contracts to introduce contract-
specific XML schemas, but in doing so we need to accept that the Uniform Contract
{400} constraint will be violated.

13_9780137012510_ch10.indd 189 7/5/12 4:36 PM

190	 Chapter 10: Service-Oriented Design with REST

This may be warranted when a service capability needs to generate a response message
containing unique data (or a unique combination of data) for which:

	 •	 no suitable canonical schemas exist

	 •	 no new canonical schema should be created due to the fact that it would not be
reusable by other services.

A consequence of non-compliance to Uniform Contract {400} is potentially increased
levels of negative coupling between service consumers and the service offering service
capabilities based on service-specific media types. Service-specific media types should
be clearly identified and effort should be made to minimize the quantity of logic that is
directly exposed to and made dependent upon these types.

SUMMARY OF KEY POINTS

•	 We can design and standardize custom HTTP methods and response
codes. We can also standardize how built-in HTTP methods and response
codes are used (or whether they are used).

•	 There are numerous existing media types we can choose to use (and
reuse) within a service inventory, many of which are registered with the
IANA (and other industry bodies). We can also design and standardize cus-
tom media types to represent common types of data and documents that
are exchanged within the service inventory.

•	 Schemas encompassed by media types are naturally standardized when
made part of a uniform contract. For schemas to be reusable, they gener-
ally need to be designed with flexibility in mind, ensuring reduced levels of
validation constraint granularity.

13_9780137012510_ch10.indd 190 7/5/12 4:36 PM

10.2  REST Service Contract Design	 191

10.2 REST Service Contract Design

This next section explores design techniques and considerations specific to individual
REST service contracts and how they relate to their overarching uniform contract.

Designing Services Based on Service Models

In Chapters 4 and 9 we described the three common service models used to establish
base functional contexts that categorize and group services within a service inventory
into three common logical layers. The choice of service model for a given REST service
can affect our approach to service contract design. The following sections briefly raise
some key considerations and provide one sample REST service contract design for each
service model.

Task Services

Task services will typically have few service capabilities, sometimes limited to only a
single one (Figure 10.1). This is due to the fact that a task service contract’s primary use
is for the execution of automated business process (or task) logic. The service capabil-
ity can be based on a simple verb, such as Start or Process. That verb, together with the
name of the task service (that will indicate the nature of the task) is often all that is
required for synchronous tasks.

Figure 10.1
A sample task service, recognizable by the verb in its name. The contract only
provides a single service capability that will be used by the composition initiator to
trigger the execution of the Validate Timesheet business process that the task service
logic encapsulates. In this case, the service capability receives a timesheet resource
identifier that will be used as the basis of the validation logic, plus a unique consumer-
generated request identifier that supports reliable triggering of the process. (Note that
the composition initiator is explained in Chapter 11.)

Additional service capabilities can be added to support asynchronous interactions as
shown in Figure 10.2. For example, tasks that involve human interaction or batch pro-
cessing will retain the state of the on-going business process between requests and will
typically allow access to this state by exposing service capabilities for this purpose.

13_9780137012510_ch10.indd 191 7/5/12 4:36 PM

192	 Chapter 10: Service-Oriented Design with REST

REST-based task services will often have service capabilities triggered by a POST
request. However, this method is not inherently reliable. A number of techniques exist
to achieve a reliable POST, including the inclusion of additional headers and handling
of response messages, or the inclusion of a unique consumer-generated request identi-
fier in the resource identifier.

To provide input to a parameterized task service it will make sense for the task service
contract to include various identifiers into the capability’s resource identifier template
(that might have been parameters in a SOAP message). This frees up the service to
expose additional resources rather than defining a custom media type as input to its
processing.

If the task service automates a long-running business process it will return an interim
response to its consumer while further processing steps may still need to take place. If
the task service includes additional capabilities to check on or interact with the state of
the business process (or composition instance), it will typically include a hyperlink to
one or more resources related to this state in the initial response message.

Entity Services

Each entity service establishes a functional boundary associated with one or more
related business entities (such as invoice, claim, customer, etc.). Entity services are the
prime means by which Logic Centralization [475] is applied to business logic within a
service inventory. The types of service capabilities exposed by a typical entity service
are focused on functions that process the underlying data associated with the entity (or
entities). Figure 10.3 provides some examples.

Entity service contracts are typically dominated by service capabilities that include
inherently idempotent and reliable GET, PUT, or DELETE methods. However, more
complex methods may be needed. Many entity services will need to support updating

Figure 10.2
Two additional service capabilities are added to allow consumers to
asynchronously check on the progress of the timesheet validation
task, and to cancel the task while it is in progress.

13_9780137012510_ch10.indd 192 7/5/12 4:36 PM

10.2  REST Service Contract Design	 193

their state consistently with changes to other entity services. Entity services will also
often include query capabilities for finding entities or parts of entities that match certain
criteria, and therefore return hyperlinks to related and relevant entities.

Utility Services

Utility services are, like entity services, expected to be agnostic and reusable. However,
unlike entity services, they do not usually have pre-defined functional scopes. While
individual utility services group related service capabilities, the services’ functional
boundaries can vary dramatically. The example illustrated in Figure 10.4 is a utility ser-
vice acting as a wrapper for a legacy system (as per the Legacy Wrapper [473] pattern).

Note

To learn more about service models and service layers, see the Process
Abstraction [486], Entity Abstraction [463], and Utility Abstraction [517]
patterns.

Figure 10.3
An entity service based on the invoice business entity that defines a functional scope
that limits the service capabilities to performing invoice-related processing only. This
agnostic Invoice service will be reused and composed by any automated business
process that needs to work with or process invoice records. For example, the Invoice
service may be invoked by the Validate Timesheet task service to retrieve invoice data
linked to client information collected from a timesheet record. The Validate Timesheet
service may then use this data to verify that what the client was billed matches what
the employee logged in the timesheet.

Figure 10.4
This utility service is based on the application of the Legacy Wrapper [473] pattern
in that it provides a service contract that encapsulates a legacy HR system (and
is accordingly named the HR System service). The service capabilities it exposes
provide generic, read-only data access functions against the data stored in the
underlying legacy repository. For example, the Employee entity service (composed
by the Verify Timesheet task service) may invoke an employee data-related service
capability to retrieve data. This type of utility service may provide access to one of
several available sources of employee and HR-related data.

13_9780137012510_ch10.indd 193 7/5/12 4:36 PM

194	 Chapter 10: Service-Oriented Design with REST

Designing and Standardizing Resource Identifiers

The fundamental requirement of an effective REST service contract design is its ability
to express the identity of resources that consumers can interact with as part of their
service capability invocations.

At a technical level the structure of a resource identifier is often irrelevant to a service
consumer. Any service consumer that follows a simple hyperlink only cares that the
destination of the hyperlink is the correct resource. It doesn’t try to interpret the mean-
ing of the resource identifier itself, past the information required to actually make the
connection to the responsible service.

With that said there are a number of reasons we proceed past the point of standardizing
the syntax of resource identifiers to the point of standardizing structure and vocabulary
within resource identifiers:

	 1.	 The more descriptive and consistent the structure of resource identifiers is for
similar service capabilities, the easier it is for humans to interpret and understand
services and their capabilities. This directly supports the application of Service
Discoverability (420).

	 2.	 Some resource identifier structures lend themselves better to the future needs of
their service contract than others. They do so by providing obvious places where
additional resources and related capabilities can be inserted in the resource identi-
fier namespace.

	 3.	 Designing flexible resource identifiers can reduce negative coupling, while
increasing backwards compatibility and, potentially, forwards compatibility (as
explained in Chapter 15).

	 4.	 In some cases, service consumers need to insert information into resource identi-
fiers, either by adding data values into the query component of a URL using a
standard syntax, or by following a URL template to insert data throughout the
URL. If the vocabulary is not reusable between multiple services then these vari-
able portions of URLs become a back door for negative forms of coupling between
the consumers to the service contract.

The latter two items directly support the application of the Service Loose Coupling (413)
principle.

13_9780137012510_ch10.indd 194 7/5/12 4:36 PM

10.2  REST Service Contract Design	 195

Service Names in Resource Identifiers

The first area of standardization we’ll explore is the use of service names within
resource identifier statements. This brings us back to the study of URI syntax, which we
began in the URIs (and URLs and URNs) section in Chapter 6. Briefly revisit this section
to re-familiarize yourself with the examples.

In the last example provided in this section:

invoices.example.com

… identifies the service within the URL:

http://invoices.example.com/

Another service:

customers.example.com

… may initially share the same IP address as:

invoices.example.com

… as a result of being deployed in a shared hosting environment.

When customers.example.com is moved to its own separate physical hardware, the IP
addresses can be easily updated via the Domain Name System (DNS) without modify-
ing the logical name of the service. Consumers that refer to customers.example.com
will automatically begin communicating with the new IP address, and therefore will
place no further burden on the old hosting environment.

If, instead, the service names were part of the path of the URL, the authority would have
to refer to the hosting environment itself.

A URL for the Invoice service that starts with:

http://services.example.com/invoice

… would always resolve to the IP address of:

services.example.com

… rather than a specific IP address for the service.

13_9780137012510_ch10.indd 195 7/5/12 4:36 PM

196	 Chapter 10: Service-Oriented Design with REST

If the Customer service were then moved to a new hosting environment, all of the
hyperlinks held by service consumers would have to change or the requests sent to the
service would still have to continue passing through the services.example.com host.

When combining REST with service-orientation, the authority needs to be synonymous
with the service name in order to maximize the application potential of the Service
Autonomy (SDP) principle. The authority is always what is looked up by the service
consumer so that it can make the necessary TCP/IP connections. It is also used to iden-
tify proxies between the service and its consumers. Sometimes, multiple services will
be hosted within the same virtual server or cluster, and these service names will resolve
to the same IP address. But, by ensuring that each service has a unique authority, the
service can be easily shifted to other IP addresses as service deployment arrangements
change.

Other URI Components

The path and query components of the URI provide context for service capabilities
within a given service. This context is combined with the service identifier in the
authority and with the method of each request to determine which service capability a
given consumer seeks to invoke.

The {fragment} component of the URI reference is never sent to the service, and is only
used as a placeholder to store instructions for the service consumer to know how to
process the response when it arrives. If a service consumer needs to use the aforemen-
tioned URI reference to invoke a GET request, it would send the part of the URI refer-
ence up to and including the query. The {fragment} component would be intentionally
omitted. For example, a page2 fragment may indicate to the service consumer that it
should start processing at page 2 in the returned document. Where exactly to find such
a point in the document depends on the media type of the document.

If some of the components of a URI are missing, the URI reference may become a rela-
tive URI. In that case, the context of the URI is used to determine what exactly it is
pointing to.

For example, a relative URI of:

/invoices/INV042

… would be expanded as:

http://invoice.example.com/invoices/INV042

13_9780137012510_ch10.indd 196 7/5/12 4:36 PM

10.2  REST Service Contract Design	 197

Relative URIs are often a useful way to refer to related resources without referring to
additional context, such as the name of the service. The base URI to resolve a relative
URI against can come from XML directives, HTTP headers, the location that a docu-
ment was retrieved from, or from a range of other sources, depending on the conven-
tions associated with the media type in use.

Resource Identifier Overlap

Resources can be any specific utility, entity, task, queue, report, statistic, or in fact
anything related to the service that can be referred to in a context. The identifier for a
resource can contain as much or as little context as is needed to specify the concept the
resource embodies. A resource could be “today’s weather in Vancouver, Canada.” A
separate resource could capture “yesterday’s weather in Vancouver, Canada” while yet
another family of resources could capture the weather in Vancouver for specific histori-
cal dates. The concepts that resources embody will sometimes overlap, so that some or
all of the same data is retrieved via different resource identifiers. Other resources will
encapsulate concepts that are distinct in their own right and do not overlap.

We can imagine that a URI such as:

http://weather/canada/vancouver/date/today

… will return the same value when retrieved as the URI:

http://weather/canada/vancouver/date/{date}

… with a date set to today’s date. However, these are different resources and perhaps
even different service capabilities. When the date switches over to the next day, the
today resource will point to the new day’s weather. The resource based on the old
{date} will still refer to the historical weather at that particular date.

Similarly, an invoice might appear as its own URI but may also have its data summa-
rized as part of an invoice list or report resource. The invoice URI may further have sub-
ordinate resources, such as a special resource indicating its paid status. In all of these
cases, the URIs are different, but the data and the service logic that implement requests
to each one overlap.

The context of the resource as identified in its URI may be dynamic or session-specific.
For example, the following URI:

http://mybank/accounts/myaccount?after=XACT102

13_9780137012510_ch10.indd 197 7/5/12 4:36 PM

198	 Chapter 10: Service-Oriented Design with REST

… may refer to the transactions in a bank account that occurred after transaction num-
ber 102. This may have been returned from the service to a particular consumer as a
placeholder between transactions the consumer has reconciled and those that have not
yet been reconciled. This kind of resource captures session information and acts as a
container for session state, allowing the service to avoid having to retain these details.

Queries can also be encapsulated in resource identifiers. Query terms, such as a required
temperature range or the maximum temperature value past a particular date, can be
included in a resource identifier. When the first request is sent to this identifier the
resource automatically springs into existence, performs its processing, and returns a
result. The consumer and any middleware are not aware of whether a resource is static
or dynamic. The interface to the resource does not change, and features such as cach-
ing, work just as well with static and dynamic resources. The implementation of each
resource is hidden from consumers.

In Chapter 6 we covered the use of forms and resource identifier templates to allow
service consumers to input parameters into resource identifiers without introducing
service-specific coupling. If URIs are being constructed by human users, forms can be
provided for them to fill out as part of producing the URI. This does not introduce tight
coupling between the service and service consumer, as the consumer does not need
to understand the data that passes through it. Only the human user needs to deter-
mine what data to place in which form fields. However, a service consumer that is not
being driven by a human user will need to know which specific variables to insert into
a given resource identifier. If automated service consumers are supplying parameters
directly as part of URIs, it is advisable to clearly differentiate between elements of the
URI that consumers are considered likely to have, in order to populate themselves and
to identify these fields in a way that is documented in the uniform contract profile for
the service inventory.

For example, the aforementioned bank account URI:

http://mybank/accounts/myaccount?after=XACT102

… suggests to readers of the service contract that it is likely to be the service consumer
that fills out the after field within the URI. In order for an automated service consumer
to avoid tight coupling with the service contract, the after field should become part of
the uniform contract. When after is used, it should have the same meaning, regardless
of which service the consumer is talking to.

13_9780137012510_ch10.indd 198 7/5/12 4:36 PM

10.2  REST Service Contract Design	 199

NOTE

Resource identifiers contain data for their corresponding services to inter-
pret. In order to invoke the correct service capability, the business context
of a request must be specified by the consumer and understood by the
service. As explained in previous chapters, resource identifiers can be
discovered by a service consumer through hyperlinking, or by direct entry
of resource identifiers into configuration data. In these cases the resource
identifier can usually be treated as opaque by the service consumer. The
consumer does not attempt to parse information out of the identifier, nor
does it need to insert additional information. Resource identifier templates
allow consumers to insert data into resource identifiers in predefined
ways, while treating the overall structure of the resource identifiers as
being opaque.

Resource identifiers that are handled in this manner by the service con-
sumer act as a message from the service that is held onto by the con-
sumer and passed back to the service with subsequent requests. These
messages can contain identifiers for entities, session state data, or any
other data the service will need the next time a request comes in for pro-
cessing. Treating resource identifiers as opaque within service consumers
means that we can reduce (or loosen) the coupling between a service
and its consumers. The service can change the content or structure of its
resource identifiers without needing corresponding changes to service
consumer logic.

Resource Identifier Design Guidelines

Here are a few tips for optimizing resource identifiers in support of SOA. Each of these
can form the basis of a design standard in support of the Canonical Expression [434]
pattern:

	 •	 Try to avoid including a variable part of the URL as the first path segment, or any-
where not preceded by a static path segment describing the context. For example,
avoid http://invoice.example.com/{invoice}. Although we may use this type
of notation for simplicity’s sake early in the service capability modeling lifecycle,
once we enter the service-oriented design stage it can make it difficult to extend
the namespace. This is because any new path could be interpreted as including
an invoice identifier. Consider introducing a prefix to qualify the variable part, for
example using http://invoice.example.com/invoice/{invoice}, instead.

13_9780137012510_ch10.indd 199 7/5/12 4:36 PM

200	 Chapter 10: Service-Oriented Design with REST

	 •	 Trailing slashes usually indicate a collection of resources. One common conven-
tion is that a GET request to a URL with a trailing slash will retrieve a list of these
resources, while a POST to the URL will create a new resource. For example,
http://invoice.example.com/unpaid/ may support a GET request to obtain all
unpaid invoices, while a POST to http://invoice.example.com/invoice/ may
create an invoice with a resource identifier of http://invoice.example.com/
invoice/INV042. This again is a departure from the notation used during the
service-oriented analysis project stage, where we use the trailing slash, together
with the initial slash, as delimiters to represent a resource.

	 •	 Single out those resource identifiers that are canonical names (URNs), and make
these URLs as simple as possible. Avoid including a query component in the
resource identifier and avoid special characters such as ‘;’, ‘=’, and ‘&’. For exam-
ple, http://invoice.example.com/?invoice=INV042 is not a good identifier
for invoice number 42, while http://invoice.example.com/invoice/INV042 is
a better choice. Simpler identifiers are easier to embed into other resource identi-
fiers, and easier for a human to read and understand; a prime requirement of the
Service Discoverability (420) principle.

	 •	 Always refer to canonical names (URNs) by their full resource identifier. For
example, the http://invoice.example.com/query{?customer} URL should
be expanded to http://invoice.example.com/query?customer=http://
customer.example.com/customer/C1234. This allows the Invoice service
to directly interact with the customer resource for additional information (if
required), without needing to construct its own resource identifier for the
customer.

	 •	 Explicitly separate query parameters expected to be inserted by human users or
service consumers into resource identifiers in the query component of the URL.
For example, http://invoice.example.com/search{?paid,due-date,
min-amount,max-amount,customer} can be interpreted as indicating that paid,
due-date, min-amount, max-amount, and customer are all likely to be inserted
into the resource identifier via human input or by a service consumer. The vocabu-
lary used in the query component of the resource identifier is likely to come under
increased governance scrutiny compared to other components of the resource.

	 •	 Variables that a service consumer needs to insert into URL templates can pro-
duce undesirable forms of coupling to be introduced between the consumer and
the service contract. This is in direct opposition to the design goals of the Ser-
vice Loose Coupling (413) principle. Each variable to be inserted needs to have

13_9780137012510_ch10.indd 200 7/5/12 4:36 PM

10.2  REST Service Contract Design	 201

an agreed upon meaning among a service and its consumers. The simplest way
to tackle this is to standardize the names, syntax, data types, and meaning of
variables across multiple services as part of the uniform contract definition. It is
straightforward to consider standardizing variable names such as dtstart and
dtend to identify the start and end dates and times of a given query. For example,
this type of vocabulary can be reused to query an invoice service as http://
invoice.example.com/query?dtstart=2015-03-06T10:00:00&dtend=

2015-04-06T10:00:00, a calendar of events, or a correspondence log for particu-
lar time periods.

NOTE

Business entities are prime targets for inclusion in a controlled resource
identifier vocabulary. We have already seen examples in this chapter
where a consumer queries the Invoice entity service for a list of invoices
related to a particular customer. In this case, the expansion of this
parameter would be the full resource identifier for that entity. As new
service capabilities are defined, new vocabulary will be discovered. It will
be important to keep the vocabulary up-to-date and to be able to identify
which elements of the vocabulary are genuinely reused in practice across
different service contracts, versus those that are service-specific.

Designing with and Standardizing REST Constraints

Although the set of REST constraints are, individually, separate and distinct design
rules with corresponding design goals, there is room for interpretation concerning
whether each constraint should be strictly applied. Due to the importance of standard-
izing how services are built as part of a service inventory, it is recommended that how
REST constraints themselves are applied also be clearly standardized.

Stateless {395}

The two basic interpretations of rules established by the Stateless {395} constraint are:

	 •	 The looser interpretation is that session state is any data that a request message
might refer to that does not have an explicit resource identifier. Under this defini-
tion, session state can be given a resource identifier within the service to transform
it into service state. It can then be deferred by the service into a database or other
dedicated repository. Further requests (by the same consumer or by other con-
sumers) refer to the state by its resource identifier and so they can be understood
independently of previous requests.

13_9780137012510_ch10.indd 201 7/5/12 4:36 PM

202	 Chapter 10: Service-Oriented Design with REST

	 •	 A stricter interpretation is that session state is any data bound to a specific service
consumer that would normally need to be destroyed when that consumer exits an
on-going service activity, or when that consumer stops interacting with the ser-
vice. Under this interpretation, associating a resource identifier with the data does
not transform it into service state and it must still not be retained by the service
between requests.

The usage of the Stateless {395} constraint requires a clear design standard, both in
regards to the interpretation of the constraint as well as the extent to which it is applied
to the service inventory.

Additionally, if any exceptions to or violations of Stateless {395} are allowed, these
need to be well-defined so that there is an opportunity to adjust the service inventory’s
underlying infrastructure accordingly.

Cache {398}

As explained in Chapter 5, this constraint requires that any request whose response
could potentially be reused for subsequent requests needs to incorporate the facility to
include cache control metadata. This constraint mostly applies to data retrieval meth-
ods, such as GET and HEAD. However, it can also apply to some uses of POST and other
forms of requests that can be classified as primarily retrieving data from a service.

Two basic forms of caching exist:

	 •	 A response message is considered reusable for a particular period of time. For
example, a message containing report data can state that its content will remain
valid for 24 hours. This allows the caching infrastructure to continue returning
the same response without having to re-invoke the service for the duration of that
period. The HTTP header used for this kind of caching is Cache-Control with a
maxage field.

	 •	 A response message is considered reusable only if its validity is checked each
time it is used. For example, a log of recent transactions may be reused until a new
transaction is added. In this case, each time a cache handles a request it explic-
itly checks with the service to ensure that no further transactions have occurred
before returning the cached response. The HTTP headers used for this kind of
caching are ETag in responses and If-None-Match in requests.

In order to decide whether to even attempt to reuse a cached response the cache needs a
mechanism for determining whether two requests are equivalent for caching purposes.
Requests are often equivalent if their method and resource identifier are the same;

13_9780137012510_ch10.indd 202 7/5/12 4:36 PM

10.2  REST Service Contract Design	 203

however, request headers can play a role in whether requests are equivalent or not. In
support of this, it can be helpful to introduce a design standard regarding the usage of
the HTTP Vary header that can be applied to identify which request headers were used
as part of generating a response and, by a process of elimination, which headers were
ignored. This feature allows requests that are slightly different to still reuse the same
cached response.

In addition to a response being able to identify which request headers were used in
generating the response, it is helpful to have a further design standard that establishes
a canonical form for request messages so that they can be compared for equivalence.
HTTP has a basic canonicalization mechanism that can be used to remove redundant
whitespace and to merge duplicate headers.

Uniform Contract {400}

HTTP requires that methods and media types be “standard.” In the context of REST this
does not simply mean standardization, but instead refers to “reuse in practice” by multi-
ple services. Methods, media types, headers, exception types, resource identifier syntax,
and any other element of messages (other than the specific resource identifiers chosen
as part of service contracts to expose service capabilities) are all required to be reused
by multiple services in order to comply with Uniform Contract {400}. In some cases (as
described earlier), even parts of the resource identifiers may be standardized as well.

Although the mere usage of a uniform contract introduces a natural level of service
inventory standardization, there are aspects that need further attention and custom
standardization.

Design standards need to be in place to address the following:

	 •	 New methods and media types added to the uniform contract need to be clearly
identified and closely monitored as they progress toward a mature state. If actual
reuse by multiple service contracts does not happen, it may be necessary to start
treating these new extensions as being service-specific.

	 •	 Any methods or media types that are intended to be service-specific need to be
governed as such to ensure that the quantity of logic that is directly exposed to
these extensions is minimized in favor of coupling logic to more reusable methods
and media types.

	 •	 Some service contracts may also not lend themselves to compliance with the inven-
tory’s overarching uniform contract. It can therefore be useful to have a design
standard that determines under what circumstances exceptions may be permitted.

13_9780137012510_ch10.indd 203 7/5/12 4:36 PM

204	 Chapter 10: Service-Oriented Design with REST

With regards to the last item on the preceding list, there should be strong governance in
place to ensure that before allowing service-specific methods and media types, uniform
methods and media types are always carefully and thoroughly considered first.

Layered System {404}

Layered System {404} requires that consumers and services not be able to tell whether
they are communicating with each other directly, or via a series of intermediaries that
understand the uniform contract. To comply with this constraint, new methods need
to be analyzed to ensure intermediaries are able to pass requests and responses on
towards their intended recipients, and to adequately hide the existence of intermediar-
ies when they are present.

One key requirement of Layered System {404} is that enough information be present in
each message for it to reach its intended recipient. This means we cannot, upon making
a connection to the service, strip out the data that allowed that connection. For exam-
ple, it is not valid to remove the service name embedded within a resource identifier
after making a connection to the service. If the connection turned out to really only be
to an intermediary then the intermediary would not be able to determine which ser-
vice should receive the message. Instead, all requests should include their full resource
identifier.

Another requirement is that consumers should not need to speak a different protocol,
use different methods, or use different headers to communicate with an intermediary as
compared to communicating with an actual service. If removing the intermediary stops
the communication from working, the architecture is in breach of Layered System {404}.

SUMMARY OF KEY POINTS

•	 Defining the reuse of uniform contract methods and media types is a
service inventory responsibility, as is enforcing the compliance of these
uniform contract elements to REST constraints as part of design standards.

•	 Services based on different service models will tend to introduce different
service contract design considerations and characteristics.

•	 The use of resource identifiers can be standardized for a given service
inventory at both the syntax and vocabulary levels.

13_9780137012510_ch10.indd 204 7/5/12 4:36 PM

10.2  REST Service Contract Design	 205

Case Study Example

By following proven REST service contract design techniques, together with cus-
tom design standards established specifically for the MUA enterprise, MUA archi-
tects use the service candidates modeled in Chapter 9 as input for a service-oriented
design process.

The results of this effort are documented in the following sections.

Confer Student Award Service Contract (Task)

A student who submits an award conferral application will do so through a Web
browser. A separate user interface is therefore designed to allow users to enter the
application details. It is the submission of this browser-based form that initiates the
task service.

Upon receiving the submission, a server-side script organizes the form data into an
XML document based on the following media type:

application/vnd.edu.mua.student-award-conferral-application+xhtml+xml

Example 10.2 provides a submitted application form completed with sample data col-
lected from the human user. This represents the data set that kick-starts and drives
the execution of an entire instance of the Confer Student Award business process.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >
 <head>
 <title>Student Award Conferral Application</title>
 </head>
 <body>
 <p>Student:
 <a rel="student"
 href="http://student.mua.edu/student/555333">
 John Smith (Student Number 555333)

 </p>
 <p>Award:
 <a rel="award"
 href="http://award.mua.edu/award/BS/CompSci">
 Bachelor of Science with Computer Science Major

13_9780137012510_ch10.indd 205 7/5/12 4:36 PM

206	 Chapter 10: Service-Oriented Design with REST

 </p>
 <p>Event:
 <a rel="event"
 href="http://event.mua.edu/fall-graduation">
 fall graduation event

 </p>
 </body>
</html>

Example 10.2
Sample application data, as submitted to the Web server. This document structure contains both human-readable and
machine-processable information.

Figure 10.5 displays the Confer Student Award ser-
vice contract. The preceding media type is deliberately
designed to include human-readable and machine-
readable data in a form suitable for long-term archival.
The document is submitted to a service capability cor-
responding directly to the Start capability defined in the
Confer Student Award service candidate (Figure 9.13).

As also shown in Figure 10.5, during the design process
for this service contract it was decided to add new ser-
vice capabilities to provide the following functions:

	 •	 DELETE /task/{id} – This capability was added to
allow an executing instance of the Confer Student Award business process to be
terminated.

	 •	 GET /task/{id} – This capability allows the state of an executing instance of the
Confer Student Award business process to be queried.

Note that the sensitive nature of this kind of application means that the GET /task/
{id} capability can be accessed only by authorized staff and by the student. The
DELETE /task/{id} capability is only accessible by the student to cancel the applica-
tion process.

Figure 10.5
The Confer Student Award service
contract.

13_9780137012510_ch10.indd 206 7/5/12 4:36 PM

10.2  REST Service Contract Design	 207

Event Service Contract (Entity)

The Event entity service is equipped with a GET /event/
{id} service capability used to query event information
and which corresponds to the Get Details capability
candidate from the Event service candidate (Figure 9.14).

During the service-oriented design pro-
cess, architects decided to add further GET

/event/{id}/calendar and GET /event/{id}/

description capabilities (Figure 10.6) that allow for
the retrieval of more specific event information. These
capabilities were not added specifically in support of the
Confer Student Award business process, but more so to
provide a broader range of anticipated reusable functionality.

Award Service Contract (Entity)

In addition to implementing the three service capabilities from the original Award
service candidate (Figure 9.15), SOA architects within MUA decide to make some
further changes.

Back in Step 4 of the REST service modeling process (Chapter 9) MUA analysts
determined that the following action was to be encompassed by the Confer Student
Award task service logic:

	 •	 Verify Student Transcript Qualifies for Award Based on Award Conferral Rules

However, with the rules being specific to each award type they determine that it
should be the Award entity service that applies the bulk of these rules. Nevertheless,
some generic checks do need to be applied so the logic is divided between the Confer
Student Award task service and the Award entity service.

To avoid the task service from needing to pass full transcript details into the Award
entity service for verification, it is decided to use a code-on-demand approach. The
Award entity service provides the logic, but the logic is executed by the task ser-
vice. The decision to define the logic centrally within the Award entity service is
justified based on the need to produce human-readable output (for students), along-
side machine-readable output (for the Confer Student Award service). As a result,

Figure 10.6
The Event service contract.

13_9780137012510_ch10.indd 207 7/5/12 4:36 PM

208	 Chapter 10: Service-Oriented Design with REST

the entity service provides a new GET /award/{id}/

conferral-rules service capability (Figure 10.7) that
supports the output of two formats for the rules logic:
the first in human-readable form and the second in a
form that can be readily embedded into the task service’s
logic.

MUA architects choose JavaScript for this purpose
because they find that JavaScript runtimes are read-
ily available for many of the technology platforms that
have been used to develop services within the inven-
tory. Choosing JavaScript over other technologies also
accounts for it being the language of choice for the user-
interface tier of the service inventory.

The same service capability is able to return the conferral rules in JavaScript or
as human-readable HTML. The decision as to which transformation to carry out
depends on which Accept header was provided by the service consumer. For exam-
ple, the Confer Student Award task service requests the application/javascript
media type, while service consumers requiring human-readable output will request
the text/html media type.

Student Transcript Service Contract (Entity)

The Student service was originally intended as a centralized entity service that
would encompass all student-related functionality and data access. However, itera-
tions of the REST service modeling process that occurred subsequent to the examples
covered in Chapter 9 resulted in a service inventory blueprint that revealed the Stu-
dent service candidate as being far more coarse grained than any other. This was
primarily due to the complexity of the Student entity and its relationships to other
related entities.

Upon review of the Student service candidate it was determined to create a set of
student-related entity services. One of these more specialized variations became the
Student Transcript service candidate (Figure 10.8).

Because the Confer Student Award business process only requires access to student
transcript information, it only needs to compose the Student Transcript service, not

Figure 10.7
The Award service contract.

13_9780137012510_ch10.indd 208 7/5/12 4:36 PM

10.2  REST Service Contract Design	 209

the actual Student service. As shown in Figure 10.9, the Student Transcript service
contains service capabilities that correspond to the service capability candidates pro-
vided by the Student Transcript service candidate.

Figure 10.8
The Student Transcript service candidate that was
defined subsequent to the Student service candidate
from Chapter 9. This service effectively replaces the
Student service in the Confer Student Award service
composition.

Figure 10.9
The Student Transcript service contract.

Notification and Document Service Contracts (Utility)

The Notification service and Document service process similar human-readable data.
Notifications sent via e-mail or hard copy can both be encoded as a human-readable
document format, such as HTML or PDF.

The Notification service is retained for e-mail notifications while the Document ser-
vice has been evolved into a printer-centric and postal-delivery-centric utility ser-
vice. The Confer Student Award task service can send a document to the student
in the preferred format by looking up the preferred delivery method in the original
application form.

As shown in Figure 10.10, the Notification and Document services can each be
invoked with the POST method.

13_9780137012510_ch10.indd 209 7/5/12 4:36 PM

210	 Chapter 10: Service-Oriented Design with REST

The sample student (John Smith) from the application form used as input for the
Confer Student Award task service has nominated his contact preference with a
hyperlink to mailto:s555333@student.mua.edu. The service inventory standard
for handling such an address is to transform the URL into http://notification.
mua.edu/sender?to=s555333@student.mua.edu and use a POST method for its
delivery. John Smith’s notification will be delivered via e-mail to this address.

Figure 10.10
The Notification and Document service contracts.

13_9780137012510_ch10.indd 210 7/5/12 4:36 PM

10.3  Complex Method Design	 211

10.3 C omplex Method Design

The uniform contract establishes a set of base methods used to perform basic data com-
munication functions. As we’ve explained, this high-level of functional abstraction is
what makes the uniform contract reusable to the extent that we can position it as the
sole, over-arching data exchange mechanism for an entire inventory of services. Besides
its inherent simplicity, this part of a service inventory architecture automatically results
in the baseline standardization of service contract elements and message exchange.

The standardization of HTTP on the World Wide Web results in a protocol specification
that describes the things that services and consumers “may,” “should,” or “must” do
to be compliant with the protocol. The resulting level of standardization is intention-
ally only as high as it needs to be to ensure the basic functioning of the Web. It leaves a
number of decisions as to how to respond to different conditions up to the logic within
individual services and consumers. This “primitive” level of standardization is impor-
tant to the Web where we can have numerous foreign service consumers interacting
with third-party services at any given time.

A service inventory, however, often represents an environment that is private and
controlled within an IT enterprise. This gives us the opportunity to customize this
standardization beyond the use of common and primitive methods. This form of cus-
tomization can be justified when we have requirements for increasing the levels of pre-
dictability and quality-of-service beyond what the World Wide Web can provide.

For example, let’s say that we would like to introduce a design standard whereby all
accounting-related documents (invoices, purchase orders, credit notes, etc.) must be
retrieved with logic that, upon encountering a retrieval failure, automatically retries the
retrieval a number of times. The logic would further require that subsequent retrieval
attempts do not alter the state of the resource representing the business documents
(regardless of whether a given attempt is successful).

With this type of design standard, we are essentially introducing a set of rules and
requirements as to how the retrieval of a specific type of document needs to be carried
out. These are rules and requirements that cannot be expressed or enforced via the
base, primitive methods provided by HTTP. Instead, we can apply them in addition to
the level of standardization enforced by HTTP by assembling them (together with other
possible types of runtime functions) into aggregate interactions. This is the basis of the
complex method.

13_9780137012510_ch10.indd 211 7/5/12 4:36 PM

212	 Chapter 10: Service-Oriented Design with REST

A complex method encapsulates a pre-defined set of interactions between a service and
a service consumer. These interactions can include the invocation of standard HTTP
methods. To better distinguish these base methods from the complex methods that
encapsulate them, we’ll refer to base HTTP methods as primitive methods (a term only
used when discussing complex method design.)

Complex methods are qualified as “complex” because they:

	 •	 can involve the composition of multiple primitive methods

	 •	 can involve the composition of a primitive method multiple times

	 •	 can introduce additional functionality beyond method invocation

	 •	 can require optional headers or properties to be supported by or included in
messages

As previously stated, complex methods are generally customized for and standardized
within a given service inventory. For a complex method to be standardized, it needs to
be documented as part of the service inventory architecture specification. We can define
a number of common complex methods as part of a uniform contract that then become
available for implementation by all services within the service inventory.

Complex methods have distinct names. The complex method examples that we cover
shortly are called:

	 •	 Fetch – A series of GET requests that can recover from various exceptions.

	 •	 Store – A series of PUT or DELETE requests that can recover from various
exceptions.

	 •	 Delta – A series of GET requests that keep a consumer in sync with changing
resource state.

	 •	 Async – An initial modified request and subsequent interactions that support
asynchronous request message processing.

Services that support a complex method communicate this by showing the method
name as part of a separate service capability (Figure 10.11), alongside the primitive
methods that the complex method is built upon. When project teams create consumer
programs for certain services, they can determine the required consumer-side logic for
a complex method by identifying what complex methods the service supports, as indi-
cated by its published service contract.

13_9780137012510_ch10.indd 212 7/5/12 4:36 PM

10.3  Complex Method Design	 213

Note

When applying the Service Abstraction (414) principle to REST service
composition design, we may exclude entirely describing some of the
primitive methods from the service contract. This can be the result of
design standards that only allow the use of a complex method in certain
situations. Going back to the previous example about the use of a com-
plex method for retrieving accounting-related documents, we may have a
design standard that prohibits these documents from being retrieved via
the regular GET method (because the GET method does not enforce the
additional reliability requirements).

It is important to note that the use of complex methods is by no means required. Out-
side of controlled environments in which complex methods can be safely defined, stan-
dardized, and applied in support of the Increased Intrinsic Interoperability goal, their
use is uncommon and generally not recommended. When building a service inventory
architecture we can opt to standardize on certain interactions through the use of com-
plex methods or we can choose to limit REST service interaction to the use of primitive
methods only. This decision will be based heavily on the distinct nature of the business
requirements addressed and automated by the services in the service inventory.

Despite their name, complex methods are intended to add simplicity to service inven-
tory architecture. For example, let’s imagine we choose not to use pre-defined complex
methods and then realize that there are common rules or policies that should have
been applied to numerous services and their consumers. In this case, we will have built
multiple services and consumers that behave unpredictably. When a service returns

Figure 10.11
An Invoice service contract displaying two service capabilities
based on primitive methods and two service capabilities based on
complex methods. We can assume that the two complex methods
incorporate the use of the two primitive methods, but we can
confirm this by studying the design specification that documents
the complex methods.

13_9780137012510_ch10.indd 213 7/5/12 4:36 PM

214	 Chapter 10: Service-Oriented Design with REST

a redirection code, we can’t be sure that all consumers will act upon it, and a tempo-
rary communication failure can have unexpected ramifications. Lack of policy can also
result in unnecessarily redundant message processing logic. The fact that the imple-
mentations will continue to remain out of synch make this a convoluted architecture
that is unnecessarily complex. This is exactly the problem that the use of complex meth-
ods is intended to avoid.

The upcoming sections introduce a set of sample complex methods organized into two
sections:

	 •	 Stateless Complex Methods

	 •	 Stateful Complex Methods

Note that these methods are by no means industry standard. Their names and the type
of message interactions and primitive method invocations they encompass have been
customized to address common types of functionality.

Note

The Case Study Example section at the end of this chapter further
explores this subject matter. In this example, in response to specific busi-
ness requirements, two new complex methods (one stateless, the other
stateful) are defined.

Stateless Complex Methods

This first collection of complex methods encapsulate message interactions that are com-
pliant with the Stateless {395} constraint.

Fetch Method

Instead of relying only on a single invocation of the HTTP GET method (and its associ-
ated headers and behavior) to retrieve content, we can build a more sophisticated data
retrieval method with features such as:

	 •	 automatic retry on timeout or connection failure

	 •	 required support for runtime content negotiation to ensure the service consumer
receives data in a form it understands

13_9780137012510_ch10.indd 214 7/5/12 4:36 PM

10.3  Complex Method Design	 215

	 •	 required redirection support to ensure that changes to the service contract can be
gracefully accommodated by service consumers

	 •	 required cache control directive support by services to ensure minimum latency,
minimum bandwidth usage, and minimum processing for redundant requests

We’ll refer to this type of enhanced read-only complex method as a Fetch. Figure 10.12
shows an example of a pre-defined message interaction of a Fetch method designed to
perform content negotiation and automatic retries.

Figure 10.12
An example of a Fetch complex method comprised of consecutive GET method calls.

Store Method

When using the standard PUT or DELETE methods to add new resources, set the state
of existing resources, or remove old resources, service consumers can suffer request
timeouts or exception responses. Although the HTTP specification explains what each
exception means, it does not impose restrictions as to how they should be handled. For
this purpose, we can create a custom Store method to standardize necessary behavior.

The Store method can have a number of the same features as a Fetch, such as requiring
automatic retry of requests, content negotiation support, and support for redirection

13_9780137012510_ch10.indd 215 7/5/12 4:36 PM

216	 Chapter 10: Service-Oriented Design with REST

exceptions. Using PUT and DELETE, it can also defeat low bandwidth connections by
always sending the most recent state requested by the consumer, rather than needing to
complete earlier requests first.

The same way that individual primitive HTTP methods can be idempotent, the Store
method can be designed to behave idempotently. By building upon primitive idem-
potent methods, any repeated, successful request messages will have no further effect
after the first request message is successfully executed.

For example, when setting an invoice state from “Unpaid” to “Paid”:

	 •	 a “toggle” request would not be idempotent because repeating the request toggles
the state back to “Unpaid.”

	 •	 the “PUT” request is idempotent when setting the invoice to “Paid” because it has
the same effect, no matter how many times the request is repeated

It is important to understand that the Store and its underlying PUT and DELETE requests
are requests to service logic, not an action carried out on the service’s underlying data-
base. As shown in Figure 10.13, these types of requests are stated in an idempotent

Figure 10.13
An example of the interaction carried out by a Store complex method.

13_9780137012510_ch10.indd 216 7/5/12 4:36 PM

10.3  Complex Method Design	 217

manner in order to efficiently allow for the retrying of requests without the need for
sequence numbers to add reliable messaging support.

Note

Service capabilities that incorporate this type of method are an example
of the application of the Idempotent Capability [470] pattern.

Delta Method

It is often necessary for a service consumer to remain synchronized with the state of a
changing resource. The Delta method is a synchronization mechanism that facilitates
stateless synchronization of the state of a changing resource between the service that
owns this state and consumers that need to stay in alignment with the state.

The Delta method follows processing logic based on the following three basic functions:

	 1.	 The service keeps a history of changes to a resource.

	 2.	 The consumer gets a URL referring to the location in the history that represents
the last time the consumer queried the state of the resource.

	 3.	 The next time the consumer queries the resource state, the service (using the URL
provided by the consumer) returns a list of changes that have occurred since the
last time the consumer queried the resource state.

Figure 10.14 illustrates this using a series of GET invocations.

The service provides a “main” resource that responds to GET requests by returning the
current state of the resource. Next to the main resource it provides a collection of “delta”
resources that each return the list of changes from a nominated point in the history
buffer.

The consumer of the Delta method activates periodically or when requested by the core
consumer logic. If it has a delta resource identifier it sends its request to that location.
If it does not have a delta resource identifier, it retrieves the main resource to become
synchronized. In the corresponding response the consumer receives a link to the delta
for the current point in the history buffer. This link will be found in the Link header
(RFC 5988) with relation type Delta.

13_9780137012510_ch10.indd 217 7/5/12 4:36 PM

218	 Chapter 10: Service-Oriented Design with REST

The requested delta resource can be in any one of the following states:

	 1.	 It can represent a set of one or more changes that have occurred to the main
resource since the point in history that the delta resource identifier refers to. In
this case, all changes in the history from the nominated point are returned along
with a link to the new delta for the current point in the history buffer. This link
will be found in the Link header with relation type Next.

Figure 10.14
An example of the message interaction encompassed by the Delta complex method.

13_9780137012510_ch10.indd 218 7/5/12 4:36 PM

10.3  Complex Method Design	 219

	 2.	 It may not have a set of changes because no changes have occurred since its nomi-
nated point in the history buffer, in which case it can return the 204 No Content
response code to indicate that the service consumer is already up-to-date and can
continue using the delta resource for its next retrieval.

	 3.	 Changes may have occurred, but the delta is now expired because the nominated
point in history is now so old that the service has elected not to preserve the
changes. In this situation, the resource can return a 410 Gone code to indicate that
the consumer has lost synchronization and should re-retrieve the main resource.

Delta resources use the same caching strategy as the main resource.

The service controls how many historical deltas it is prepared to accumulate based on
how much time it expects consumers will take (on average) to get up-to-date, or in some
cases where a full audit trail is maintained for other purposes the number of deltas can
be indefinite. The amount of space required to keep this record is constant and predict-
able regardless of the number of consumers, leaving it up to each individual service
consumer to keep track of where it is in the history buffer.

Async Method

This complex method provides pre-defined interactions for the successful and canceled
exchange of asynchronous messages. It is useful for when a given request requires more
time to execute than what the standard HTTP request timeouts allow.

Normally, if a request takes too long, the consumer message processing logic will time
out or an intermediary will return a 504 Gateway Timeout response code to the service
consumer. The Async method provides a fallback mechanism for handling requests
and returning responses that does not require the service consumer to maintain its
HTTP connection open for the total duration of the request interaction.

As shown in Figure 10.15, the service consumer issues a request, but does so specifying
a call-back resource identifier. If the service chooses to use this identifier, it responds
with the 202 Accepted response code, and may optionally return a resource identifier
in the Location header to help it track the place of the asynchronous request in its pro-
cessing queue. When the request has been fully processed, its result is delivered by the
service, which then issues a PUT or POST request to the call-back address of the service
consumer.

If the service consumer issues a DELETE request (as shown in Figure 10.16) while the
Async request is still in the processing queue (and before a response is returned), a

13_9780137012510_ch10.indd 219 7/5/12 4:36 PM

220	 Chapter 10: Service-Oriented Design with REST

Figure 10.15
An asynchronous request interaction encompassed by the Async complex method.

Figure 10.16
An asynchronous cancel interaction encompassed by the Async complex method.

separate pre-defined interaction is carried out to cancel the asynchronous request. In
this case, no response is returned and the service cancels the processing of the request.

If the consumer cannot listen for call-back requests, it can use the asynchronous request
identifier to periodically poll the service. Once the request has been successfully han-
dled, it is possible to retrieve its result using the previously described Fetch method
before deleting the asynchronous request state. Services that execute either interaction
encompassed by this method must have a means of purging old asynchronous requests
if service consumers are unavailable to pick up responses or otherwise “forget” to delete
request resources.

13_9780137012510_ch10.indd 220 7/5/12 4:36 PM

10.3  Complex Method Design	 221

Stateful Complex Methods

These next complex methods use REST as the basis of service design but incorporate
interactions that intentionally breach the Stateless {395} constraint. Although the sce-
narios represented by these methods are relatively common in traditional enterprise
application designs, this kind of communication is not considered native to the World
Wide Web. The use of stateful complex methods can be warranted when we accept the
reduction in scalability that comes with this design decision.

Trans Method

The Trans method essentially provides the interactions necessary to carry out a two-
phase commit between one service consumer and one or more services (as per the
application of the Atomic Transaction [432] pattern). Changes made within the transac-
tion are guaranteed to either successfully propagate across all participating services, or
all services are rolled back to their original states.

This type of complex method requires a “prepare” function for each participant before
a final commit or rollback is carried out. Functionality of this sort is not natively sup-
ported by HTTP. Therefore, we need to introduce a custom PREP-PUT method (a vari-
ant of the PUT method), as shown in Figure 10.17.

In this example the PREP-PUT method is the equivalent of PUT, but it does not commit
the PUT action. A different method name is used to ensure that if the service does not

Figure 10.17
An example of a Trans complex method, using a custom primitive method called PREP-PUT.

13_9780137012510_ch10.indd 221 7/5/12 4:36 PM

222	 Chapter 10: Service-Oriented Design with REST

understand how to participate in the Trans complex method, it then rejects the PREP-
PUT method and allows the consumer to abort the transaction.

To carry out the logic behind a typical Trans complex method will usually require the
involvement of a transaction controller to ensure that the commit and rollback func-
tions are truly and reliably carried out with atomicity.

Alternative transaction models that have varying degrees of compliance with Stateless
{395} are further explored in Chapter 12.

PubSub Method

A variety of publish-subscribe options are available once it is decided to intention-
ally breach the Stateless {395} constraint. As explained in the Event-Driven Messaging
[465] pattern, these types of mechanisms are designed to support real-time interactions
where a service consumer must act immediately when some pre-determined event at a
given resource occurs. The Event-Driven Messaging [465] pattern is applied as an alter-
native to the repeated polling of the resource, which can negatively impact performance
if the polling frequency is increased to detect changes with minimal delay.

There are various ways that this complex method can be designed. Figure 10.18 illus-
trates an approach that treats publish-subscribe messaging as a “cache-invalidation”
mechanism.

This form of publish-subscribe interaction is considered “lightweight” because it does
not require services to send out the actual changes to the subscribers. Instead, it informs
them that a resource has changed by pushing out the resource identifier, and then reuses
an existing, cacheable Fetch method as the service consumers pull the new representa-
tions of the changed resource.

The amount of state required to manage these subscriptions is bound to one fixed-sized
record for each service consumer. If multiple invalidations queue up for a particular
subscribed event, they can be folded together into a single notification. Regardless of
whether the consumer receives one or multiple invalidation messages, it will still only
need to invoke one Fetch method to bring itself up-to-date with the state of its resources
each time it sees one or more new invalidation messages.

The PubSub method can be further adjusted to distribute subscription load and session
state storage to different places around the network. This technique can be particularly
effective within cloud-based environments that naturally provide multiple, distributed
storage resources.

13_9780137012510_ch10.indd 222 7/5/12 4:36 PM

10.3  Complex Method Design	 223

SUMMARY OF KEY POINTS

•	 When designing both the uniform contract and individual service contracts,
we can consider creating complex methods as part of the functions offered
by the contracts.

•	 Complex methods encompass the aggregation of multiple primitive HTTP
methods or the repeated execution of a single primitive HTTP method,
along with other functional features that are part of predefined message
interactions.

•	 Complex methods are ideally standardized so that the interaction behavior
is consistent across all services and consumers that use them.

•	 Both stateless and stateful complex methods can be designed, although the
latter variation is not REST-compliant.

Figure 10.18
An example of a PubSub complex method based on cache invalidation. When the service determines that
something has changed on one or more resources, it issues cache expiry notifications to its subscribers. Each
subscriber can then use a Fetch complex method (or something equivalent) to bring the subscriber up-to-date
with respect to the changes.

4: Resource changed()

: Consumer : Service

2: SUBSCRIBE(resource, callback resource)

3: Created(subscription resource)

1: Start Request()

6: OK

7: Begin fetch()

5: EXPIRE(callback resource)

9: OK(cache metadata, representation)

8: GET(resource, content negotiation metadata)

10: Unsubscribe()

12: OK

11: DELETE(subscription resource)

13_9780137012510_ch10.indd 223 7/5/12 4:36 PM

224	 Chapter 10: Service-Oriented Design with REST

Case Study Example

The MUA team responsible for service design encounters a number of requirements
for accessing and updating resource state.

For example:

	 •	 One service consumer needs to atomically read the state of the resource, perform
processing, and store the updated state back to the resource.

	 •	 Another service consumer needs to support concurrent user actions that modify
the same resource. These actions update certain resource properties while others
need to remain the same.

Allowing individual service consumers to contain different custom logic that per-
forms these types of functions will inadvertently lead to problems and runtime
exceptions when any two service consumers attempt updates to the same resource
at the same time.

MUA architects conclude that the simplest way to avoid this is to introduce a new
complex method that ensures that a resource is locked while being updated by a
given consumer. Using the rules of optimistic locking, an approach commonly tradi-
tionally used with database updates, they are able to create a complex method that
is stateless and takes advantage of existing standard features of the HTTP protocol.
They name the method “OptLock” and write up an official description that is made
part of the uniform contract profile:

OptLock Complex Method

If two separate service consumers attempt to update the state of a resource at the
same time, their actions will clearly conflict with each other as the outcome depends
on the order in which their requests reach the service. The OptLock method (Figure
10.19) addresses this problem by providing a means by which a service consumer can
determine whether the state of a resource has changed since it was last read by the
consumer before attempting an update.

Specifically, a consumer will first retrieve the current state associated with a resource
identifier using the Fetch method. Along with the data the consumer receives an
“ETag.” ETag is a concept from HTTP that uniquely identifies the version of a resource

13_9780137012510_ch10.indd 224 7/5/12 4:36 PM

10.3  Complex Method Design	 225

in an opaque way. Whenever the resource changes state its ETag is guaranteed to be
different. When the service consumer initiates a Store, it does so conditionally by
requesting the service to only honor the Store interaction if the resource’s ETag still
matches the one that it had when fetched. This is done with the If-Match header.
The service can use the ETag value in the condition to detect whether the resource
state has been changed in the meantime.

The OptLock complex method does not introduce any new features to HTTP, but
instead introduces new requirements for handling GET and PUT requests. Specifi-
cally, the GET request must return an ETag value and the PUT request must process
the If-Match header. And, if the resource has changed, the service must further
guarantee not to carry out the PUT request.

There are several techniques for computing ETags. Some compute a hash value out
of the state information associated with the resource, some simply keep a “last modi-
fied” timestamp for each resource, and others track the version of the resource state
explicitly.

Figure 10.19
An example of an OptLock complex method.

13_9780137012510_ch10.indd 225 7/5/12 4:36 PM

226	 Chapter 10: Service-Oriented Design with REST

The OptLock method may not scale effectively for high concurrent access to a
particular resource. If consumer update requests are denied with an HTTP 409
Conflict response code, the OptLock method prescribes how the consumer can
recover by fetching a newer version of the resource over which they have to re-com-
pute the change and retry the Store method. However, this may fail again due to a
conflicting update request. Service consumers that interact with a resource in this
way rely on that particular resource having relatively low rates of write access.

The OptLock complex method becomes available as part of the uniform contract and
is implemented by several services. However, scenarios emerge where a multiple con-
sumers attempt to modify the resource at the same time, causing regular exceptions
and failed updates. These situations occur during peak usage times and because
concurrent usage volume is expected to increase further, it is determined that a more
efficient means of serializing updates to the resource needs to be established.

It is proposed that the OptLock complex method be changed to perform pessimistic
locking instead, as per the following PesLock complex method description:

PesLock Complex Method

Pessimistic locking provides greater flexibility and certainty than optimistic locking.
From a REST perspective, this comes at the cost of introducing stateful interactions
and limiting concurrent access while the pessimistic lock is held.

As shown in Figure 10.20, the WebDAV extensions to HTTP provide locking primi-
tives that can be used within a composition architecture that intentionally breaches
the Stateless {395} constraint. One consumer may lock out others from accessing a
resource, so care must be taken that appropriate access control policies are in place.
Consumers can also fail while the lock is held, which means that locks must be able
to time out independently of the consumers that register them.

This way, the service consumer would be able to lock the resource for as long as it
takes to read the state, modify it, and write it back again. Although other service
consumers would still encounter exceptions while attempting to update the resource
at the same time as the consumer that has locked it, it is deemed preferable to the
unpredictability of managing the resource as part of an optimistic locking model.

13_9780137012510_ch10.indd 226 7/5/12 4:36 PM

10.3  Complex Method Design	 227

This solution is not embraced by all of the MUA architects because retaining the lock
on the resource requires that the Stateless {395} constraint be breached. It could fur-
ther lead to the danger of stale locks starting to impact performance and scalability.
In particular, unless proper measures are taken to ensure that only authorized con-
sumers may lock a resource, this exposes the resources to denial of service attacks by
malicious consumers that could lock out all other consumers.

After further discussion, a compromise is reached. The OptLock method will be
attempted first. As a fallback, if the consumer tries three times and fails, it will
attempt the stateful PesLock method to ensure it is able to complete the action.

Figure 10.20
An example of a PesLock complex method.

13_9780137012510_ch10.indd 227 7/5/12 4:36 PM

	SOA_REST_Highres6
	symbol legend
	SOA_with_REST
	13_9780137012510_ch10

