

SOA with REST
Principles, Patterns & Constraints

for Building Enterprise Solutions with REST

PREnTicE HAll

Upper Saddle river, NJ • BoStoN • iNdiaNapoliS • SaN FraNciSco

New York • toroNto • MoNtreal • loNdoN • MUNich • pariS • Madrid

cape towN • SYdNeY • tokYo • SiNgapore • Mexico citY

thomas erl, Benjamin carlyle,
cesare pautasso, and raj Balasubramanian

00_9780137012510_FM .indd 7 7/5/12 5:22 PM

35_9780137012510_ifc-ibc.indd 2 7/5/12 4:56 PM

Contents at a Glance
Foreword . xxix

Chapter 1: introduction .1

Chapter 2: case Study Background .13

Part I: Fundamentals
Chapter 3: introduction to Services .23

Chapter 4: Soa terminology and concepts .31

Chapter 5: reSt constraints and goals . .51

Part II: restFul servIce-OrIentatIOn
Chapter 6: Service contracts with reSt .67

Chapter 7: Service-orientation with reSt .93

Part III: servIce-OrIented analysIs and desIgn wIth rest
Chapter 8: Mainstream Soa Methodology and reSt .127

Chapter 9: analysis and Service Modeling with reSt .139

Chapter 10: Service-oriented design with reSt .173

Part Iv: servIce cOmPOsItIOn wIth rest
Chapter 11: Fundamental Service composition with reSt 231

Chapter 12: advanced Service composition with reSt . .261

Chapter 13: Service composition with reSt case Study 305

Part v: suPPlemental
Chapter 14: design patterns for Soa with reSt .327

Chapter 15: Service versioning with reSt . 343

Chapter 16: Uniform contract profiles . .361

Part vI: aPPendIces
appendix a: case Study conclusion . 383

appendix B: industry Standards Supporting the web . 387

appendix C: reSt constraints reference .391

appendix d: Service-orientation principles reference . 409

appendix e: Soa design patterns reference .425

appendix F: State concepts and types .521

appendix G: the annotated Soa Manifesto . 533

appendix h: additional resources .547

about the authors . 553

about the pattern co-contributors . 555

about the Foreword contributor .557

index . 559

00_9780137012510_FM .indd 11 7/5/12 5:22 PM

Chapter 10

Service-Oriented Design with REST

10.1 Uniform Contract Design Considerations

10.2 REST Service Contract Design

10.3 Complex Method Design

13_9780137012510_ch10.indd 173 7/5/12 4:35 PM

PrinciPles, Patterns, and constraints
referenced in this chaPter:

	 •	 Atomic	Transaction	[432]

	 •	 Cache	{398}

	 •	 Canonical	Expression	[434]

	 •	 Canonical	Schema	[437]

	 •	 Entity	Abstraction	[463]

	 •	 Event-Driven	Messaging	[465]

	 •	 Idempotent	Capability	[470]

	 •	 Layered	System	{404}

	 •	 Legacy	Wrapper	[473]

	 •	 Logic	Centralization	[475]

	 •	 Process	Abstraction	[486]

	 •	 Service	Abstraction	(414)

	 •	 Service	Discoverability	(420)

	 •	 Service	Loose	Coupling	(413)

	 •	 Stateless	{395}

	 •	 Uniform	Contract	{400}

	 •	 Utility	Abstraction	[517]

	 •	 Validation	Abstraction	[518]

13_9780137012510_ch10.indd 174 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 175

Using	the	conceptual	service	candidates	modeled	during	the	preceding	service-oriented	
analysis	process	as	a	starting	point,	service-oriented	design	is	dedicated	to	the	physical	
design	of	service	contracts.	When	it	comes	to	contract	design	with	REST,	we	need	to	be	
concerned	with	two	particular	areas:	

	 1.	 The	design	of	a	uniform	contract	for	a	service	inventory.

	 2.	 The	design	of	individual	service	contracts	within	the	service	inventory	and	in	
compliance	with	the	uniform	contract.

The	uniform	contract	needs	to	be	firmly	established	before	we	begin	creating	service	
contracts	that	will	be	required	to	form	dependencies	on	uniform	contract	features.	As	
a	service	inventory	grows	and	evolves,	new	services	can	still	influence	the	design	of	a	
uniform	contract,	but	uniform	contract	features	are	generally	changed	and	added	at	a	
very	deliberate	pace.

Following	the	preceding	sequence,	this	chapter	begins	with	coverage	of	uniform	con-
tract design topics and then moves on to topics that pertain to the design of REST ser-
vice	contracts.	The	chapter	concludes	with	a	section	on	complex	methods, an optional
field	of	REST	contract	design	and	one	suitable	mainly	for	use	within	controlled	environ-
ments,	such	as	internal	service	inventories.

10.1 Uniform contract design considerations

When	creating	a	uniform	contract	for	a	service	inventory,	we	have	a	responsibility	to	
equip	and	limit	its	features	so	that	it	is	streamlined	to	effectively	accommodate	require-
ments	and	restrictions	unique	 to	 the	service	 inventory.	The	default	 characteristics	of	
Web-centric	technology	architecture	can	provide	an	effective	basis	for	a	service	inven-
tory’s	uniform	contract,	although	additional	forms	of	standardization	and	customiza-
tion	are	likely	to	be	required	for	non-trivial	service	inventory	architectures.

The	following	sections	explore	how	common	elements	of	a	uniform	contract	(methods,
media	types,	and	exceptions	in	particular)	can	be	customized	to	meet	the	needs	of	indi-
vidual	service	inventories.

designing and standardizing Methods

When	we	discuss	methods	in	relation	to	the	uniform	contract, it is considered short-
hand	 for	 a	 request-response	 communications	 mechanism	 that	 also	 includes	 meth-
ods, headers, response codes,	and	exceptions.	Methods	are	centralized	as	part	of	 the	

13_9780137012510_ch10.indd 175 7/5/12 4:36 PM

176 Chapter 10: Service-Oriented Design with REST

uniform	contract	in	order	to	ensure	that	there	are	always	a	small	number	of	ways	of	
moving	 information	 around	 within	 a	 particular	 service	 inventory, and that existing
service	consumers	will	work	correctly	with	new	or	modified	services	as	they	are	added	
to	the	inventory.	Whereas	it	 is	 important	to	minimize	the	number	of	methods	in	the	
uniform	contract,	methods	can	and	should	be	added	when	service	inventory	interac-
tion	requirements	demand	it.	This	is	a	natural	part	of	evolving	a	service	inventory	in	
response	to	business	change.

HTTP	 provides	 a	 solid	 foundation	 by	 sup-
plying	 the	 basic	 set	 of	 methods	 (such	 as	
GET,	PUT,	DELETE,	POST)	proven	by	use	on	
the	 Web	 and	 widely	 supported	 by	 off-the-
shelf software components and hardware
devices.	But	 the	need	may	arise	 to	express	
other	 types	 of	 interactions	 for	 a	 service	
inventory.	For	example,	 you	may	decide	 to	
add	 a	 special	 method	 that	 can	 be	 used	 to	
reliably	trigger	a	resource	to	execute	a	task	
at most once,	rather	than	using	the	less	reli-
able	HTTP	POST	method.	

HTTP	 is	 designed	 to	 be	 extended	 in	 these	
ways.	The	HTTP	specification	explicitly	sup-
ports the notion of extension methods,	cus-
tomized	headers,	and	extensibility	in	other	
areas.	Leveraging	this	feature	of	HTTP	can	
be	 effective, as long as new extensions are
added	carefully	and	at	a	rate	appropriate	for	
the	number	of	services	that	implement	HTTP	within	an	inventory.	This	way, the total
number	of	options	for	moving	data	around	(that	services	and	consumers	are	required	
to	understand)	remains	manageable.

note

Later in this chapter we explore a set of sample, extended methods
(referred to as complex methods), each of which utilizes multiple basic
HTTP methods or utilizes a single basic HTTP method multiple times, to
perform pre-defined, standardized interactions.

Less	well-known	HTTP	methods	
have come and gone in the past.
For example,	at	various	times	the	
HTTP	specification	has	included	
a PATCH	method	consistent	with	
a	partial	update	or	partial	store	
communications	mechanism.	
PATCH	is	currently	specified	
separately	from	HTTP	methods	
in	the	IETF’s	RFC	5789	document.	
Other	IETF	specifications,	such	
as	WebDAV’s	RFC	4918	and	the	
Session	Initiation	Protocol’s RFC
3261,	introduced	new	methods	as	
well as new headers and response
codes	(or	special	interpretations	
thereof).

13_9780137012510_ch10.indd 176 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 177

Common	circumstances	that	can	warrant	the	creation	of	new	methods	include:

	 •	 Hyperlinks	may	be	used	to	facilitate	a	sequence	of	request-response	pairs.	When	
they	start	to	read	like	verbs	instead	of	nouns	and	tend	to	suggest	that	only	a	
single	method	will	be	valid	on	the	target	of	a	hyperlink,	we	can	consider	introduc-
ing a new method instead. For example the “customer”	hyperlink	for	an	invoice	
resource	suggests	that	GET	and	PUT	requests	might	be	equally	valid	for	the	
customer	resource.	But	a	“begin	transaction”	hyperlink	or	a	“subscribe”	hyperlink	
suggest	only	POST	is	valid	and	may	indicate	the	need	for	a	new	method	instead.

	 •	 Data	with	must-understand	semantics	may	be	needed	within	message	headers.	In	
this case,	a	service	that	ignores	this	metadata	can	cause	incorrect	runtime	behav-
ior.	HTTP	does	not	include	a	facility	for	identifying	individual	headers	or	informa-
tion within headers as “must-understand.”	A	new	method	can	be	used	to	enforce	
this	requirement	because	the	custom	method	will	be	automatically	rejected	by	
a service that doesn’t	understand	the	request	(whereas	falling	back	on	a	default	
HTTP	method	will	allow	the	service	to	ignore	the	new	header	information).

It	 is	 important	 to	 acknowledge	 that	 introducing	 custom	 methods	 can	 have	 negative	
impacts	 when	 exploring	 vendor	 diversity	 within	 an	 implementation	 environment.	 It	
may	 prevent	 off-the-shelf	 components	 (such	 as	 caches,	 load	 balancers,	 firewalls, and
various	 HTTP-based	 software	 frameworks)	 from	 being	 fully	 functional	 within	 the	
service	inventory.	Stepping	away	from	HTTP	and	its	default	methods	should	only	be	
attempted	in	mature	service	inventories	when	the	effects	on	the	underlying	technology	
architecture	and	infrastructure	are	fully	understood.

Some	alternatives	to	creating	new	methods	can	also	be	explored.	For	example, service
interactions	 that	 require	 a	 number	 of	 steps	 can	 use	 hyperlinks	 to	 guide	 consumers	
through	the	requests	they	need	to	make.	The	HTTP	Link	header	(RFC	5988)	can	be	con-
sidered	to	keep	these	hyperlinks	separate	from	the	actual	document	content.

designing and standardizing httP headers

Exchanging messages with metadata	 is	 common	 in	 service-oriented	 solution	design.	
Because	of	the	emphasis	of	composing	a	set	of	services	together	to	collectively	automate	
a	given	task	at	runtime, there is often a need for a message to provide a range of header
information	 that	 pertains	 to	 how	 the	 message	 should	 be	 processed	 by	 intermediary	
service agents and services along its message path.

13_9780137012510_ch10.indd 177 7/5/12 4:36 PM

178 Chapter 10: Service-Oriented Design with REST

Built-in	HTTP	headers	can	be	used	in	a	number	of	ways:

	 •	 They	can	be	used	to	add	parameters	related	to	a	request	method	as	an	alternative	
to	using	query	strings	to	represent	the	parameters	within	the	URL.	For	example,
the Accept	header	can	supplement	the	GET	method	by	providing	content	negotia-
tion data.

	 •	 They	can	be	used	to	add	parameters	related	to	a	response	code.	For	example	the	
Location	header	can	be	used	with	the	201 Created response code to indicate the
identifier	of	a	newly	created	resource.	

	 •	 They	can	be	used	to	communicate	general	information	about	the	service	or	
consumer.	For	example	the	Upgrade	header	can	indicate	that	a	service	consumer	
supports	and	prefers	a	different	protocol, while the Referrer header can indicate
which	resource	the	consumer	came	from	while	following	a	series	of	hyperlinks.	

This	type	of	general	metadata	may	be	used	in	conjunction	with	any	HTTP	method.

HTTP	headers	can	also	be	utilized	to	add	rich	metadata.	For	this	purpose	custom	head-
ers	are	generally	required,	which	re-introduces	the	need	to	determine	whether	or	not	
the	message	content	must	be	understood	by	recipients	or	whether	it	can	optionally	be	
ignored.	This	association	of	must-understand	semantics	with	new	methods	and	must-
ignore	semantics	with	new	message	headers	is	not	an	inherent	feature	of	REST,	but	it	is	
a	feature	of	HTTP.	

When	introducing	custom	HTTP	headers	that	can	be	ignored	by	services,	regular	HTTP	
methods	can	safely	be	used.	This	also	makes	 the	use	of	custom	headers	backwards-
compatible	when	creating	new	versions	of	existing	message	types.

As	 previously	 stated	 in	 the	 Designing and Standardizing Methods section,	 new	 HTTP	
methods	can	be	introduced	to	enforce	must-understand	content	by	requiring	services	
to	either	be	designed	to	support	the	custom	method	or	to	reject	the	method	invocation	
attempt	altogether.	In	support	of	this	behavior, a new Must-Understand	header	can	be	
created in the same format as the existing Connection header,	which	would	list	all	of	
the	headers	that	need	to	be	understood	by	message	recipients.	

If	this	type	of	modification	is	made	to	HTTP,	it	would	be	the	responsibility	of	the	SOA	
Governance	Program	Office	responsible	for	the	service	inventory	to	ensure	that	these	
semantics	are	implemented	consistently	as	part	of	inventory-wide	design	standards.	If	
custom,	must-understand	HTTP	headers	are	successfully	established	within	a	service	
inventory, we can explore a range of applications of messaging metadata. For example,

13_9780137012510_ch10.indd 178 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 179

we	can	determine	whether	it	is	possible	or	feasible	to	emulate	messaging	metadata	such	
as	what	is	commonly	used	in	SOAP	messaging	frameworks	based	on	WS-*	standards.

While	 custom	 headers	 that	 enforce	 reliability	 or	 routing	 content	 (as	 per	 the	 WS-	
ReliableMessaging	and	WS-Addressing	standards)	can	be	added	to	recreate	acknowl-
edgement	and	intelligent	load	balancing	interactions,	other	forms	of	WS-*	functions	are	
subject	to	built-in	limitations	of	the	HTTP	protocol.	The	most	prominent	example	is	the	
use	of	WS-Security	to	enable	message-level	security	features,	such	as	encryption	and	
digital	signatures.	Message-level	security	protects	messages	by	actually	transforming	
the	content	so	that	intermediaries	along	a	message	path	are	unable	to	read	or	alter	mes-
sage	content.	Only	those	message	recipients	with	prior	authorization	are	able	to	access	
the content.

This	type	of	message	transformation	is	not	supported	in	HTTP/1.1.	HTTP	does	have	
some	 basic	 features	 for	 transforming	 the	 body	 of	 the	 message	 alone	 through	 its	
 Content-Encoding header,	but	this	is	generally	limited	to	compression	of	the	message	
body	and	does	not	include	the	transformation	of	headers.	If	this	feature	was	used	for	
encryption	purposes	the	meaning	of	the	message	could	still	be	modified	or	inspected	
in transit,	even	though	the	body	part	of	the	message	could	be	protected.	Message	sig-
natures	are	also	not	possible	in	HTTP/1.1	as	there	is	no	canonical	form	for	an	HTTP	
message to sign,	and	no	industry	standard	that	determines	what	modifications	interme-
diaries	would	be	allowed	to	make	to	such	a	message.

designing and standardizing httP response codes

HTTP	was	originally	designed	as	a	synchronous, client-server protocol for the exchange
of	HTML	pages	over	the	World	Wide	Web.	These	characteristics	are	compatible	with	
REST	constraints	and	make	it	also	suitable	as	a	protocol	used	to	invoke	REST	service	
capabilities.

Developing	a	service	using	HTTP	is	very	similar	to	publishing	dynamic	content	on	a	
Web	server.	Each	HTTP	request	invokes	a	REST	service	capability	and	that	invocation	
concludes	with	the	sending	of	a	response	message	back	to	the	service	consumer.	

A	given	response	message	can	contain	any	one	of	a	wide	variety	of	HTTP	codes, each
of	which	has	a	designated	number.	Certain	ranges	of	code	numbers	are	associated	with	
particular	types	of	conditions,	as	follows:

	 •	 100-199	are	informational	codes	used	as	low	level	signaling	mechanisms,	such	as	
a	confirmation	of	a	request	to	change	protocols.	

13_9780137012510_ch10.indd 179 7/5/12 4:36 PM

180 Chapter 10: Service-Oriented Design with REST

	 •	 200-299	are	general	success	codes	used	to	describe	various	kinds	of	success	
conditions.

	 •	 300-399	are	redirection	codes	used	to	request	that	the	consumer	retry	a	request	to	
a	different	resource	identifier,	or	via	a	different	intermediary.	

	 •	 400-499	represent	consumer-side	error	codes	that	indicate	that	the	consumer	has	
produced	a	request	that	is	invalid	for	some	reason.	

	 •	 500-599	represent	service-side	error	codes	that	indicate	that	the	consumer’s
request	may	have	been	valid	but	that	the	service	has	been	unable	to	process	it	for	
internal reasons.

The	 consumer-side	 and	 service-side	 exception	 categories	 are	 helpful	 for	 “assigning
blame,”	but	do	little	to	actually	enable	service	consumers	to	recover	from	failure.	This	
is	because,	while	the	codes	and	reasons	provided	by	HTTP	are	standardized, how ser-
vice	 consumers	 are	 required	 to	 behave	 upon	 receiving	 response	 codes	 is	 not.	 When	
standardizing	service	design	for	a	service	inventory,	it	is	necessary	to	establish	a	set	of	
conventions that assign response codes concrete meaning and treatment.

Table	10.1	provides	common	descriptions	of	how	service	consumers	can	be	designed	to	
respond to common response codes.

response code reason Phrase treatment

100 Continue Indeterminate

101 Switching	Protocols Indeterminate

1xx Any	other	1xx	code Failure

200 OK Success

201 Created Success

202 Accepted Success

203 Non-Authoritative	
Information

Success

204 No Content Success

13_9780137012510_ch10.indd 180 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 181

response code reason Phrase treatment

205 Reset Content Success

206 Partial	Content Success

2xx Any	other	2xx	code Success

300 Multiple	Choices Failure

301 Moved	Permanently Indeterminate

(Common	Behavior:	
Modify	resource	identifier	

and	retry.)

302 Found Indeterminate

(Common	Behavior:
Change	request	to	a	GET	and	

retry	using	nominated	resource	
identifier.)

303 See Other

304 Not	Modified Success

(Common	Behavior:
Use	cached	response.)

305 Use	Proxy Indeterminate

(Common	Behavior:
Connect	to	identified	proxy	and	

resend	original	message.)

307 Temporary	Redirect Indeterminate

(Common	Behavior:
Retry	once	to	nominated	resource	

identifier.)

3xx Any	other	3xx	code Failure

400 Bad	Request Failure

continues

13_9780137012510_ch10.indd 181 7/5/12 4:36 PM

182 Chapter 10: Service-Oriented Design with REST

response code reason Phrase treatment

401 Unauthorized Indeterminate

(Common	Behavior:	
Retry	with	correct	credentials.)

402 Payment	Required Failure

403 Forbidden Failure

404 Not	Found Success	if	request	was	DELETE,
else	Failure

405 Method	Not	Allowed Failure

406 Not	Acceptable Failure

407 Proxy	Authentication	Required Indeterminate

(Common	Behavior:	
Retry	with	correct	credentials.)

408 Request	Timeout Failure

409 Conflict Failure

410 Gone Success	if	request	was	DELETE,
else	Failure

411 Length	Required Failure

412 Precondition	Failed Failure

413 Request	Entity	Too	Large Failure

414 Request-URI	Too	Long Failure

415 Unsupported	Media	Type Failure

416 Requested	Range	
Not	Satisfiable

Failure

417 Expectation Failed Failure

13_9780137012510_ch10.indd 182 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 183

response code reason Phrase treatment

4xx Any	other	4xx	code Failure

500 Internal	Server	Error Failure

501 Not	Implemented Failure

502 Bad	Gateway Failure

503 Service	Unavailable Repeat	if	Retry-After	header	is	
specified.	Otherwise,	Failure.

504 Gateway	Timeout Repeat	if	request	is	idempotent.	
Otherwise,	Failure.

505 HTTP	Version	
Not	Supported

Failure

5xx Any	other	5xx	code Failure

Table 10.1
HTTP response codes, and typical corresponding consumer behavior.

As	is	evident	when	reviewing	Table	10.1,	HTTP	response	codes	go	well	beyond	the	sim-
ple	distinction	between	success	and	failure.	They	provide	an	indication	of	how	consum-
ers can respond to and recover from exceptions.

Let’s	take	a	closer	look	at	some	of	the	values	from	the	Treatment	column	in	Table	10.1:

	 •	 Repeat	means	that	the	consumer	is	encouraged	to	repeat	the	request, taking into
account	any	delay	specified	in	responses	such	as	503 Service Unavailable. This
may	mean	sleeping	before	trying	again.	If	the	consumer	chooses	not	to	repeat	the	
request,	it	must	treat	the	method	as	failed.

	 •	 Success	means	the	consumer	should	treat	the	message	transmission	as	a	success-
ful	action	and	must	therefore	not	repeat	it.	(Note	that	specific	success	codes	may	
require	more	subtle	interpretation.)

	 •	 Failed	means	that	the	consumer	must	not	repeat	the	request	unchanged,	although	
it	may	issue	a	new	request	that	takes	the	response	into	account.	The	consumer	
should	treat	this	as	a	failed	method	if	a	new	request	cannot	be	generated.	(Note	
that	specific	failure	codes	may	require	more	subtle	interpretation.)

13_9780137012510_ch10.indd 183 7/5/12 4:36 PM

184 Chapter 10: Service-Oriented Design with REST

	 •	 Indeterminate	means	that	the	consumer	needs	to	modify	its	request	in	the	manner	
indicated.	The	request	must	not	be	repeated	unchanged	and	a	new	request	that	
takes	the	response	into	account	should	be	generated.	The	final	outcome	of	the	
interaction	will	depend	on	the	new	request.	If	the	consumer	is	unable	to	generate	
a	new	request,	then	this	code	must	be	treated	as	failed.

Because	HTTP	is	a	protocol, not a set of message processing logic,	it	is	up	to	the	service	
to	decide	what	status	code	(success,	failure,	or	otherwise)	to	return.	As	previously	men-
tioned,	because	consumer	behavior	is	not	always	sufficiently	standardized	by	HTTP	for	
machine-to-machine interactions,	it	needs	to	be	explicitly	and	meaningfully	standard-
ized	as	part	of	an	SOA	project.	

For example,	indeterminate	codes	tend	to	indicate	that	service	consumers	must	handle	
a	situation	using	their	own	custom	logic.	We	can	standardize	these	types	of	codes	in	
two	ways:

	 •	 Design	standards	can	determine	which	indeterminate	codes	can	and	cannot	be	
issued	by	service	logic.

	 •	 Design	standards	can	determine	how	service	consumer	logic	must	interpret	those	
indeterminate codes that are allowed.

Customizing Response Codes

The	HTTP	specification	allows	for	extensions	to	response	codes.	This	extension	feature	
is	primarily	there	to	allow	future	versions	of	HTTP	to	introduce	new	codes.	It	is	also	
used	by	some	other	specifications	(such	as	WebDAV)	to	define	custom	codes.	This	 is	
typically	done	with	numbers	that	are	not	likely	to	collide	with	new	HTTP	codes, which
can	be	achieved	by	putting	them	near	the	end	of	the	particular	range	(for	example,	299	
is	unlikely	to	ever	be	used	by	the	main	HTTP	standard).	

Specific	service	inventories	can	follow	this	approach	by	introducing	custom	response	
codes	as	part	of	the	service	inventory	design	standards.	In	support	of	the	Uniform Con-
tract	 {400}	 constraint,	 custom	response	 codes	 should	only	be	defined	at	 the	uniform	
contract level, not at the REST service contract level.

When	creating	custom	response	codes,	it	is	important	that	they	be	numbered	based	on	
the	range	they	fall	in.	For	example,	2xx	codes	should	be	communicating	success, while
4xx	codes	should	only	represent	failure	conditions.

13_9780137012510_ch10.indd 184 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 185

Additionally,	it	is	good	practice	to	standardize	the	insertion	of	human-readable	content	
into	the	HTTP	response	message	via	the	Reason	Phrase.	For	example,	the	code	400	has	a	
default	reason	phrase	of	“Bad	Request.”	This	is	enough	for	a	service	consumer	to	handle	
the	response	as	a	general	failure,	but	it	doesn’t	tell	a	human	anything	useful	about	the	
actual	problem.	Setting	the	reason	phrase	to	“The	service	consumer	request	is	missing	
the	Customer	address	field.” or perhaps even “Request	body	failed	validation	against	
schema	 http://example.com/customer”	 is	 more	 helpful,	 especially	 when	 reviewing	
logs	of	exception	conditions	that	may	not	have	the	full	document	attached.

Consumers	can	associate	generic	logic	to	handle	response	codes	in	each	of	these	ranges,
but	may	also	need	to	associate	specific	logic	to	specific	codes.	Some	codes	can	be	lim-
ited	so	that	they	are	only	generated	if	the	consumer	requests	a	special	feature	of	HTTP,
which	means	 that	 some	codes	 can	be	 left	unimplemented	by	consumers	 that	do	not	
request	these	features.

Uniform	contract	exceptions	are	generally	standardized	within	the	context	of	a	particu-
lar	new	type	of	interaction	that	is	required	between	services	and	consumers.	They	will	
typically	be	introduced	along	with	one	or	more	new	methods	and/or	headers.	This	con-
text	will	guide	the	kind	of	exceptions	that	are	created.	For	example,	it	may	be	necessary	
to	introduce	a	new	response	code	to	indicate	that	a	request	cannot	be	fulfilled	due	to	a	
lock	on	a	resource.	(WebDAV	provides	the	423 Locked	code	for	this	purpose.)	

When	 introducing	and	standardizing	custom	response	codes	 for	a	 service	 inventory	
uniform	contract	we	need	to	ensure	that:

	 •	 each	custom	code	is	appropriate	and	absolutely	necessary

	 •	 the	custom	code	is	generic	and	highly	reusable	by	services

	 •	 the	extent	to	which	service	consumer	behavior	is	regulated	is	not	too	restrictive	so	
that	the	code	can	apply	to	a	large	range	of	potential	situations

	 •	 code	values	are	set	to	avoid	potential	collision	with	response	codes	from	relevant	
external	protocol	specifications

	 •	 code	values	are	set	to	avoid	collision	with	custom	codes	from	other	service	inven-
tories	(in	support	of	potential	cross-service	inventory	message	exchanges	that	may	
be	required)

Response	code	numeric	ranges	can	be	considered	a	form	of	exception	inheritance.	Any	
code	within	a	particular	range	is	expected	to	be	handled	by	a	default	set	of	logic,	just	as	
if	the	range	were	the	parent	type	for	each	exception	within	that	range.	

13_9780137012510_ch10.indd 185 7/5/12 4:36 PM

186 Chapter 10: Service-Oriented Design with REST

In	 this	section,	we	have	briefly	explored	response	codes	within	 the	context	of	HTTP.	
However,	it	is	worth	noting	that	REST	can	be	applied	with	other	protocols	(and	other	
exception	models).	It	is	ultimately	the	base	protocol	of	a	service	inventory	architecture	
that will determine how normal and exceptional conditions are reported.

For example,	you	could	consider	having	a	REST-based	service	inventory	standardized	
on	the	use	of	SOAP	messages	that	result	 in	SOAP-based	exceptions	 instead	of	HTTP	
exception	codes.	This	allows	the	response	code	ranges	to	be	substituted	for	inheritance	
of exceptions.

designing Media types

During	 the	 lifetime	 of	 a	 service	 inventory	 architecture	 we	 can	 expect	 more	 changes	
will	be	required	to	the	set	of	a	uniform	contract’s	media	types	than	to	its	methods.	For	
example,	a	new	media	type	will	be	required	whenever	a	service	or	consumer	needs	to	
communicate	machine-readable	information	that	does	not	match	the	format	or	schema	
requirements	of	any	existing	media	type.	

Some	common	media	types	from	the	Web	to	consider	for	service	inventories	and	ser-
vice	contracts	include:

	 •	 text/plain; charset=utf-8 for simple representations,	such	as	integer	and	
string	data.	Primitive	data	can	be	encoded	as	strings,	as	per	built-in	XML	Schema	
data	types.

	 •	 application/xhtml+xml for more complex lists,	tables,	human-readable	text,
hypermedia	links	with	explicit	relationship	types,	and	additional	data	based	on	
microformats.org	and	other	specifications.

	 •	 text/uri-list	for	plain	lists	of	URIs.

	 •	 application/atom+xml	for	feeds	of	human-readable	event	information	or	other	
data	collections	that	are	time-related	(or	time	ordered).

More	standard	media	types	can	be	found	in	the	IANA	media	type	registry, as explained
in	Appendix	B.	Before	inventing	new	media	types	for	use	within	a	service	inventory, it
is	advisable	to	first	carry	out	a	search	of	established	industry	media	types	that	may	be	
suitable.		

Whether	choosing	existing	media	types	or	creating	custom	ones,	 it	 is	helpful	to	con-
sider	the	following	best	practices:

13_9780137012510_ch10.indd 186 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 187

	 •	 Each	specific	media	type	should	ideally	be	specific	to	a	schema.	For	exam-
ple, application/xml or application/json	are	not	schema-specific, while
 application/atom+xml	used	as	a	syndication	format	is	specific	enough	to	be	
useful	for	content	negotiation	and	to	identify	how	to	process	documents.

	 •	 Media	types	should	be	abstract	in	that	they	specify	only	as	much	information	as	
their	recipients	need	to	extract	via	their	schemas.	Keeping	media	types	abstract	
allows	them	to	be	reused	within	more	service	contracts.

	 •	 New	media	types	should	reuse	mature	vocabularies	and	concepts	from	industry	
specifications	whenever	appropriate.	This	reduces	the	risk	that	key	concepts	have	
been	missed	or	poorly	constructed,	and	further	improves	compatibility	with	other	
applications	of	the	same	vocabularies.

	 •	 A	media	type	should	include	a	hyperlink	whenever	it	needs	to	refer	to	a	related	
resource	whose	representation	is	located	outside	the	immediate	document.	Link	
relation	types	may	be	defined	by	the	media	type’s schema or, in some cases, sepa-
rately,	as	part	of	a	link	relation	profile.

	 •	 Custom	media	types	should	be	defined	with	must-ignore	semantics	or	other	
extension	points	that	allow	new	data	to	be	added	to	future	versions	of	the	media	
type	without	old	services	and	consumers	rejecting	the	new	version.

	 •	 Media	types	should	be	defined	with	standard	processing	instructions	that	
describe	how	a	new	processor	should	handle	old	documents	that	may	be	miss-
ing	some	information.	Usually	these	processing	instructions	ensure	that	earlier	
versions	of	a	document	have	compatible	semantics.	This	way, new services and
consumers	do	not	have	to	reject	the	old	versions.

All	media	 types	 that	are	either	 invented	 for	a	particular	service	 inventory	or	reused	
from	another	source	should	be	documented	in	the	uniform	contract	profile, alongside
the	definition	of	uniform	methods.	

HTTP	uses	Internet	media	type	identifiers	that	conform	to	a	specific	syntax.	Custom	
media	types	are	usually	identified	with	the	notation:	

application/vnd.organization.type+supertype

…where application	 is	 a	 common	 prefix	 that	 indicates	 that	 the	 type	 is	 used	 for	
machine	 consumption	 and	 standards.	 The	organization	 field	 identifies	 the	 vendor	
namespace,	which	can	optionally	be	registered	with	IANA.	

13_9780137012510_ch10.indd 187 7/5/12 4:36 PM

188 Chapter 10: Service-Oriented Design with REST

The type	part	is	a	unique	name	for	the	media	type	within	the	organization, while the
supertype	indicates	that	this	type	is	a	refinement	of	another	media	type.	For	example,
application/vnd.com.examplebooks.purchase-order+xml	may	indicate	that:

	 •	 the	type	is	meant	for	machine	consumption

	 •	 the	type	is	vendor-specific,	and	the	organization	that	has	defined	the	type	is	
“examplebooks.com”

	 •	 the	type	is	for	purchase	orders	(and	may	be	associated	with	a	canonical	Purchase	
Order	XML	schema)

	 •	 the	type	is	derived	from	XML,	meaning	that	recipients	can	unambiguously	handle	
the	content	with	XML	parsers

Types	meant	for	more	general	inter-organizational	use	can	be	defined	with	the	media	
type	 namespace	 of	 the	 organization	 ultimately	 responsible	 for	 defining	 the	 type.	
Alternatively,	 they	 can	 be	 defined	 without	 the	 vendor	 identification	 information	 in	
place	by	registering	each	type	directly,	following	the	process	defined	in	the	RFC	4288	
specification.

designing schemas for Media types

Within	a	service	inventory,	most	custom	media	types	created	to	represent	business	data	
and	documents	will	be	defined	together	with	XML	schemas.	This	essentially	applies	
the Canonical	Schema	[437]	pattern	in	that	it	establishes	a	set	of	standardized	data	mod-
els	that	are	reused	by	REST	services	within	the	inventory	to	whatever	extent	feasible.

For	 this	 to	be	successful,	especially	with	 larger	collections	of	services, schemas need
to	be	designed	to	be	flexible.	This	means	that	it	is	generally	preferable	for	schemas	to	
enforce	a	coarse	level	of	validation	constraint	granularity	that	allows	each	schema	to	be	
applicable	for	use	with	a	broader	range	of	data	interaction	requirements.	

REST	requires	media	types	and	their	schemas	to	be	defined	only	at	the	uniform	contract	
level.	If	a	service	capability	requires	a	unique	data	structure	for	a	response	message,
it	must	still	use	one	of	 the	canonical	media	 types	provided	by	 the	uniform	contract.	
Designing	 schemas	 to	 be	 flexible	 and	 weakly	 typed	 can	 accommodate	 a	 variety	 of	
	service-specific	message	exchange	requirements.

13_9780137012510_ch10.indd 188 7/5/12 4:36 PM

10.1 Uniform Contract Design Considerations 189

note

To explore techniques for weakly typing XML Schema definitions, see
Chapters 6, 12, and 13 in the book Web Service Contract Design & Ver-
sioning for SOA, as well as the description for the Validation Abstraction
[518] pattern.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://example.com/schema/po"
 xmlns="http://example.com/schema/po">
 <xsd:element name="LineItemList" type="LineItemListType"/>
 <xsd:complexType name="LineItemListType">
 <xsd:element name="LineItem" type="LineItemType"
 minOccurs="0"/>
 </xsd:complexType>
 <xsd:complexType name="LineItemType">
 <xsd:sequence>
 <xsd:element name="productID" type="xsd:anyURI"/>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="available" type="xsd:boolean"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example 10.1

One	 of	 the	 most	 straightforward	 ways	 of	 making	 a	 media	 type	 more	 reusable	 is	 to	
design	the	schema	to	support	a	list	of	zero	or	more	items.	This	enables	the	media	type	
to	permit	one	instance	of	the	underlying	type,	but	also	allows	queries	that	return	zero	
or	more	instances.	Making	individual	elements	within	the	document	optional	can	also	
increase	reuse	potential.

Service-Specific XML Schemas

It	 is	 technically	 possible	 for	 individual	 REST	 service	 contracts	 to	 introduce	 contract-
specific	XML	schemas,	but	 in	doing	so	we	need	 to	accept	 that	 the	Uniform	Contract	
{400}	constraint	will	be	violated.	

13_9780137012510_ch10.indd 189 7/5/12 4:36 PM

190 Chapter 10: Service-Oriented Design with REST

This	may	be	warranted	when	a	service	capability	needs	to	generate	a	response	message	
containing	unique	data	(or	a	unique	combination	of	data)	for	which:

	 •	 no	suitable	canonical	schemas	exist	

	 •	 no	new	canonical	schema	should	be	created	due	to	the	fact	that	it	would	not	be	
reusable	by	other	services.	

A	consequence	of	non-compliance	to	Uniform	Contract	 {400}	 is	potentially	 increased	
levels	of	negative	coupling	between	service	consumers	and	the	service	offering	service	
capabilities	based	on	service-specific	media	types.	Service-specific	media	types	should	
be	clearly	identified	and	effort	should	be	made	to	minimize	the	quantity	of	logic	that	is	
directly	exposed	to	and	made	dependent	upon	these	types.

sUMMarY of KeY Points

•	 We can design and standardize custom HTTP methods and response
codes. We can also standardize how built-in HTTP methods and response
codes are used (or whether they are used).

•	 There are numerous existing media types we can choose to use (and
reuse) within a service inventory, many of which are registered with the
IANA (and other industry bodies). We can also design and standardize cus-
tom media types to represent common types of data and documents that
are exchanged within the service inventory.

•	 Schemas encompassed by media types are naturally standardized when
made part of a uniform contract. For schemas to be reusable, they gener-
ally need to be designed with flexibility in mind, ensuring reduced levels of
validation constraint granularity.

13_9780137012510_ch10.indd 190 7/5/12 4:36 PM

10.2 REST Service Contract Design 191

10.2 rest service contract design

This next section explores	design	techniques	and	considerations	specific	to	individual	
REST	service	contracts	and	how	they	relate	to	their	overarching	uniform	contract.

designing services Based on service Models

In	Chapters	4	and	9	we	described	the	three	common	service	models	used	to	establish	
base	functional	contexts	that	categorize	and	group	services	within	a	service	inventory	
into	three	common	logical	layers.	The	choice	of	service	model	for	a	given	REST	service	
can	affect	our	approach	to	service	contract	design.	The	following	sections	briefly	raise	
some	key	considerations	and	provide	one	sample	REST	service	contract	design	for	each	
service model.

Task Services

Task services will	typically	have	few	service	capabilities,	sometimes	limited	to	only	a	
single	one	(Figure	10.1).	This	is	due	to	the	fact	that	a	task	service	contract’s	primary	use	
is	for	the	execution	of	automated	business	process	(or	task)	logic.	The	service	capabil-
ity	can	be	based	on	a	simple	verb,	such	as	Start	or	Process.	That	verb, together with the
name	of	 the	 task	service	 (that	will	 indicate	 the	nature	of	 the	 task)	 is	often	all	 that	 is	
required	for	synchronous	tasks.

Figure 10.1
A sample task service, recognizable by the verb in its name. The contract only
provides a single service capability that will be used by the composition initiator to
trigger the execution of the Validate Timesheet business process that the task service
logic encapsulates. In this case, the service capability receives a timesheet resource
identifier that will be used as the basis of the validation logic, plus a unique consumer-
generated request identifier that supports reliable triggering of the process. (Note that
the composition initiator is explained in Chapter 11.)

Additional	service	capabilities	can	be	added	to	support	asynchronous	interactions	as	
shown	in	Figure	10.2.	For	example,	tasks	that	involve	human	interaction	or	batch	pro-
cessing	will	retain	the	state	of	the	on-going	business	process	between	requests	and	will	
typically	allow	access	to	this	state	by	exposing	service	capabilities	for	this	purpose.

13_9780137012510_ch10.indd 191 7/5/12 4:36 PM

192 Chapter 10: Service-Oriented Design with REST

REST-based	 task	 services	 will	 often	 have	 service	 capabilities	 triggered	 by	 a	 POST	
request.	However,	this	method	is	not	inherently	reliable.	A	number	of	techniques	exist	
to	achieve	a	reliable	POST,	including	the	inclusion	of	additional	headers	and	handling	
of response messages,	or	the	inclusion	of	a	unique	consumer-generated	request	identi-
fier	in	the	resource	identifier.	

To	provide	input	to	a	parameterized	task	service	it	will	make	sense	for	the	task	service	
contract	to	include	various	identifiers	into	the	capability’s	resource	identifier	template	
(that	 might	 have	 been	 parameters	 in	 a	 SOAP	 message).	 This	 frees	 up	 the	 service	 to	
expose	additional	resources	rather	than	defining	a	custom	media	type	as	input	to	its	
processing.

If	the	task	service	automates	a	long-running	business	process	it	will	return	an	interim	
response	to	its	consumer	while	further	processing	steps	may	still	need	to	take	place.	If	
the	task	service	includes	additional	capabilities	to	check	on	or	interact	with	the	state	of	
the	business	process	(or	composition	instance),	it	will	typically	include	a	hyperlink	to	
one	or	more	resources	related	to	this	state	in	the	initial	response	message.

Entity Services

Each	 entity	 service	 establishes	 a	 functional	 boundary	 associated	 with	 one	 or	 more	
related	business	entities	(such	as	invoice, claim,	customer,	etc.).	Entity	services	are	the	
prime	means	by	which	Logic	Centralization	[475]	is	applied	to	business	logic	within	a	
service	inventory.	The	types	of	service	capabilities	exposed	by	a	typical	entity	service	
are	focused	on	functions	that	process	the	underlying	data	associated	with	the	entity	(or	
entities).	Figure	10.3	provides	some	examples.

Entity	 service	 contracts	 are	 typically	 dominated	 by	 service	 capabilities	 that	 include	
inherently	 idempotent	 and	 reliable	 GET,	 PUT,	 or	 DELETE	 methods.	 However, more
complex	methods	may	be	needed.	Many	entity	services	will	need	to	support	updating	

Figure 10.2
Two additional service capabilities are added to allow consumers to
asynchronously check on the progress of the timesheet validation
task, and to cancel the task while it is in progress.

13_9780137012510_ch10.indd 192 7/5/12 4:36 PM

10.2 REST Service Contract Design 193

their	state	consistently	with	changes	to	other	entity	services.	Entity	services	will	also	
often	include	query	capabilities	for	finding	entities	or	parts	of	entities	that	match	certain	
criteria,	and	therefore	return	hyperlinks	to	related	and	relevant	entities.

Utility Services

Utility	services	are,	like	entity	services,	expected	to	be	agnostic	and	reusable.	However,
unlike	entity	services,	they	do	not	usually	have	pre-defined	functional	scopes.	While	
individual	 utility	 services	 group	 related	 service	 capabilities, the services’	 functional	
boundaries	can	vary	dramatically.	The	example	illustrated	in	Figure	10.4	is	a	utility	ser-
vice	acting	as	a	wrapper	for	a	legacy	system	(as	per	the	Legacy	Wrapper	[473]	pattern).

note

To learn more about service models and service layers, see the Process
Abstraction [486], Entity Abstraction [463], and Utility Abstraction [517]
patterns.

Figure 10.3
An entity service based on the invoice business entity that defines a functional scope
that limits the service capabilities to performing invoice-related processing only. This
agnostic Invoice service will be reused and composed by any automated business
process that needs to work with or process invoice records. For example, the Invoice
service may be invoked by the Validate Timesheet task service to retrieve invoice data
linked to client information collected from a timesheet record. The Validate Timesheet
service may then use this data to verify that what the client was billed matches what
the employee logged in the timesheet.

Figure 10.4
This utility service is based on the application of the Legacy Wrapper [473] pattern
in that it provides a service contract that encapsulates a legacy HR system (and
is accordingly named the HR System service). The service capabilities it exposes
provide generic, read-only data access functions against the data stored in the
underlying legacy repository. For example, the Employee entity service (composed
by the Verify Timesheet task service) may invoke an employee data-related service
capability to retrieve data. This type of utility service may provide access to one of
several available sources of employee and HR-related data.

13_9780137012510_ch10.indd 193 7/5/12 4:36 PM

194 Chapter 10: Service-Oriented Design with REST

designing and standardizing resource identifiers

The	fundamental	requirement	of	an	effective	REST	service	contract	design	is	its	ability	
to	express	 the	 identity	of	 resources	 that	consumers	can	 interact	with	as	part	of	 their	
service	capability	invocations.	

At	a	technical	level	the	structure	of	a	resource	identifier	is	often	irrelevant	to	a	service	
consumer.	Any	service	consumer	that	 follows	a	simple	hyperlink	only	cares	 that	 the	
destination	of	the	hyperlink	is	the	correct	resource.	It	doesn’t	try	to	interpret	the	mean-
ing	of	the	resource	identifier	itself,	past	the	information	required	to	actually	make	the	
connection	to	the	responsible	service.

With	that	said	there	are	a	number	of	reasons	we	proceed	past	the	point	of	standardizing	
the	syntax	of	resource	identifiers	to	the	point	of	standardizing	structure	and	vocabulary	
within	resource	identifiers:

	 1.	 The	more	descriptive	and	consistent	the	structure	of	resource	identifiers	is	for	
similar	service	capabilities,	the	easier	it	is	for	humans	to	interpret	and	understand	
services	and	their	capabilities.	This	directly	supports	the	application	of	Service
Discoverability	(420).

	 2.	 Some	resource	identifier	structures	lend	themselves	better	to	the	future	needs	of	
their	service	contract	than	others.	They	do	so	by	providing	obvious	places	where	
additional	resources	and	related	capabilities	can	be	inserted	in	the	resource	identi-
fier	namespace.

	 3.	 Designing	flexible	resource	identifiers	can	reduce	negative	coupling, while
increasing	backwards	compatibility	and,	potentially,	forwards	compatibility	(as	
explained	in	Chapter	15).

	 4.	 In	some	cases,	service	consumers	need	to	insert	information	into	resource	identi-
fiers,	either	by	adding	data	values	into	the	query	component	of	a	URL	using	a	
standard	syntax,	or	by	following	a	URL	template	to	insert	data	throughout	the	
URL.	If	the	vocabulary	is	not	reusable	between	multiple	services	then	these	vari-
able	portions	of	URLs	become	a	back	door	for	negative	forms	of	coupling	between	
the	consumers	to	the	service	contract.

The	latter	two	items	directly	support	the	application	of	the	Service	Loose	Coupling	(413)	
principle.

13_9780137012510_ch10.indd 194 7/5/12 4:36 PM

10.2 REST Service Contract Design 195

Service Names in Resource Identifiers

The	 first	 area	 of	 standardization	 we’ll	 explore	 is	 the	 use	 of	 service	 names	 within	
resource	identifier	statements.	This	brings	us	back	to	the	study	of	URI	syntax, which we
began	in	the	URIs (and URLs and URNs)	section	in	Chapter	6.	Briefly	revisit	this	section	
to	re-familiarize	yourself	with	the	examples.

In	the	last	example	provided	in	this	section:

invoices.example.com

…	identifies	the	service	within	the	URL:

http://invoices.example.com/

Another	service:

customers.example.com

…	may	initially	share	the	same	IP	address	as:

invoices.example.com

…	as	a	result	of	being	deployed	in	a	shared	hosting	environment.	

When	customers.example.com	is	moved	to	its	own	separate	physical	hardware,	the	IP	
addresses	can	be	easily	updated	via	the	Domain	Name	System	(DNS)	without	modify-
ing	the	logical	name	of	the	service.	Consumers	that	refer	to	customers.example.com
will	automatically	begin	communicating	with	the	new	IP	address, and therefore will
place	no	further	burden	on	the	old	hosting	environment.

If, instead, the service names were part of the path	of	the	URL,	the	authority	would	have	
to refer to the hosting environment itself.

A	URL	for	the	Invoice	service	that	starts	with:

http://services.example.com/invoice

…	would	always	resolve	to	the	IP	address	of:

services.example.com

…	rather	than	a	specific	IP	address	for	the	service.	

13_9780137012510_ch10.indd 195 7/5/12 4:36 PM

196 Chapter 10: Service-Oriented Design with REST

If	 the	 Customer	 service	 were	 then	 moved	 to	 a	 new	 hosting	 environment, all of the
hyperlinks	held	by	service	consumers	would	have	to	change	or	the	requests	sent	to	the	
service	would	still	have	to	continue	passing	through	the	services.example.com host.

When	combining	REST	with	service-orientation,	the	authority	needs	to	be	synonymous	
with	 the	 service	 name	 in	 order	 to	 maximize	 the	 application	 potential	 of	 the	 Service	
Autonomy	(SDP)	principle.	The	authority	 is	always	what	 is	 looked	up	by	the	service	
consumer	so	that	it	can	make	the	necessary	TCP/IP	connections.	It	is	also	used	to	iden-
tify	proxies	between	the	service	and	its	consumers.	Sometimes,	multiple	services	will	
be	hosted	within	the	same	virtual	server	or	cluster, and these service names will resolve
to	the	same	IP	address.	But,	by	ensuring	that	each	service	has	a	unique	authority, the
service	can	be	easily	shifted	to	other	IP	addresses	as	service	deployment	arrangements	
change.

Other URI Components

The path and	 query	 components	 of	 the	 URI	 provide	 context	 for	 service	 capabilities	
within	 a	 given	 service.	 This	 context	 is	 combined	 with	 the	 service	 identifier	 in	 the	
authority	and	with	the	method	of	each	request	to	determine	which	service	capability	a	
given	consumer	seeks	to	invoke.	

The {fragment}	component	of	the	URI	reference	is	never	sent	to	the	service,	and	is	only	
used	as	a	placeholder	 to	store	 instructions	 for	 the	service	consumer	to	know	how	to	
process	the	response	when	it	arrives.	If	a	service	consumer	needs	to	use	the	aforemen-
tioned	URI	reference	to	invoke	a	GET	request,	it	would	send	the	part	of	the	URI	refer-
ence	up	to	and	including	the	query.	The	{fragment}	component	would	be	intentionally	
omitted. For example, a page2	 fragment	may	indicate	to	the	service	consumer	that	 it	
should	start	processing	at	page	2	in	the	returned	document.	Where	exactly	to	find	such	
a	point	in	the	document	depends	on	the	media	type	of	the	document.	

If	some	of	the	components	of	a	URI	are	missing,	the	URI	reference	may	become	a	rela-
tive	URI.	 In	 that	 case,	 the	 context	of	 the	URI	 is	used	 to	determine	what	exactly	 it	 is	
pointing to.

For example,	a	relative	URI	of:

/invoices/INV042

…	would	be	expanded	as:	

http://invoice.example.com/invoices/INV042

13_9780137012510_ch10.indd 196 7/5/12 4:36 PM

10.2 REST Service Contract Design 197

Relative	URIs	are	often	a	useful	way	to	refer	to	related	resources	without	referring	to	
additional context,	such	as	the	name	of	the	service.	The	base	URI	to	resolve	a	relative	
URI	against	can	come	from	XML	directives,	HTTP	headers,	 the	location	that	a	docu-
ment was retrieved from,	or	from	a	range	of	other	sources, depending on the conven-
tions	associated	with	the	media	type	in	use.

Resource Identifier Overlap

Resources	 can	 be	 any	 specific	 utility,	 entity, task,	 queue, report, statistic, or in fact
anything	related	to	the	service	that	can	be	referred	to	in	a	context.	The	identifier	for	a	
resource	can	contain	as	much	or	as	little	context	as	is	needed	to	specify	the	concept	the	
resource	 embodies.	 A	 resource	 could	 be	 “today’s	 weather	 in	 Vancouver, Canada.”	 A	
separate	resource	could	capture	“yesterday’s	weather	in	Vancouver, Canada”	while	yet	
another	family	of	resources	could	capture	the	weather	in	Vancouver	for	specific	histori-
cal	dates.	The	concepts	that	resources	embody	will	sometimes	overlap, so that some or
all	of	the	same	data	is	retrieved	via	different	resource	identifiers.	Other	resources	will	
encapsulate	concepts	that	are	distinct	in	their	own	right	and	do	not	overlap.

We	can	imagine	that	a	URI	such	as:

http://weather/canada/vancouver/date/today

…	will	return	the	same	value	when	retrieved	as	the	URI:

http://weather/canada/vancouver/date/{date}

…	with	a	date	set	to	today’s date. However,	these	are	different	resources	and	perhaps	
even	 different	 service	 capabilities.	 When	 the	 date	 switches	 over	 to	 the	 next	 day, the
today	 resource	 will	 point	 to	 the	 new	 day’s	 weather.	 The	 resource	 based	 on	 the	 old	
{date}	will	still	refer	to	the	historical	weather	at	that	particular	date.

Similarly,	an	invoice	might	appear	as	its	own	URI	but	may	also	have	its	data	summa-
rized	as	part	of	an	invoice	list	or	report	resource.	The	invoice	URI	may	further	have	sub-
ordinate	resources,	such	as	a	special	resource	indicating	its	paid	status.	In	all	of	these	
cases,	the	URIs	are	different,	but	the	data	and	the	service	logic	that	implement	requests	
to each one overlap.

The	context	of	the	resource	as	identified	in	its	URI	may	be	dynamic	or	session-specific.	
For example,	the	following	URI:

http://mybank/accounts/myaccount?after=XACT102

13_9780137012510_ch10.indd 197 7/5/12 4:36 PM

198 Chapter 10: Service-Oriented Design with REST

…	may	refer	to	the	transactions	in	a	bank	account	that	occurred	after	transaction	num-
ber	102.	This	may	have	been	returned	from	the	service	to	a	particular	consumer	as	a	
placeholder	between	transactions	the	consumer	has	reconciled	and	those	that	have	not	
yet	been	reconciled.	This	kind	of	resource	captures	session	information	and	acts	as	a	
container for session state, allowing the service to avoid having to retain these details.

Queries	can	also	be	encapsulated	in	resource	identifiers.	Query	terms,	such	as	a	required	
temperature	range	or	the	maximum	temperature	value	past	a	particular	date,	can	be	
included	 in	 a	 resource	 identifier.	 When	 the	 first	 request	 is	 sent	 to	 this	 identifier	 the	
resource	automatically	 springs	 into	existence, performs its processing,	 and	 returns	a	
result.	The	consumer	and	any	middleware	are	not	aware	of	whether	a	resource	is	static	
or	dynamic.	The	interface	to	the	resource	does	not	change,	and	features	such	as	cach-
ing,	work	just	as	well	with	static	and	dynamic	resources.	The	implementation	of	each	
resource	is	hidden	from	consumers.

In	Chapter	6	we	covered	 the	use	of	 forms	and	resource	 identifier	 templates	 to	allow	
service	 consumers	 to	 input	 parameters	 into	 resource	 identifiers	 without	 introducing	
service-specific	coupling.	If	URIs	are	being	constructed	by	human	users,	forms	can	be	
provided	for	them	to	fill	out	as	part	of	producing	the	URI.	This	does	not	introduce	tight	
coupling	between	 the	 service	and	service	 consumer,	 as	 the	 consumer	does	not	need	
to	understand	 the	data	 that	passes	 through	 it.	Only	 the	human	user	needs	 to	deter-
mine	what	data	to	place	in	which	form	fields.	However,	a	service	consumer	that	is	not	
being	driven	by	a	human	user	will	need	to	know	which	specific	variables	to	insert	into	
a	given	resource	identifier.	If	automated	service	consumers	are	supplying	parameters	
directly	as	part	of	URIs,	it	is	advisable	to	clearly	differentiate	between	elements	of	the	
URI	that	consumers	are	considered	likely	to	have,	in	order	to	populate	themselves	and	
to	identify	these	fields	in	a	way	that	is	documented	in	the	uniform	contract	profile	for	
the	service	inventory.

For example,	the	aforementioned	bank	account	URI:	

http://mybank/accounts/myaccount?after=XACT102

…	suggests	to	readers	of	the	service	contract	that	it	is	likely	to	be	the	service	consumer	
that	fills	out	the	after	field	within	the	URI.	In	order	for	an	automated	service	consumer	
to	avoid	tight	coupling	with	the	service	contract, the after	field	should	become	part	of	
the	uniform	contract.	When	after	is	used,	it	should	have	the	same	meaning, regardless
of	which	service	the	consumer	is	talking	to.	

13_9780137012510_ch10.indd 198 7/5/12 4:36 PM

10.2 REST Service Contract Design 199

note

Resource identifiers contain data for their corresponding services to inter-
pret. In order to invoke the correct service capability, the business context
of a request must be specified by the consumer and understood by the
service. As explained in previous chapters, resource identifiers can be
discovered by a service consumer through hyperlinking, or by direct entry
of resource identifiers into configuration data. In these cases the resource
identifier can usually be treated as opaque by the service consumer. The
consumer does not attempt to parse information out of the identifier, nor
does it need to insert additional information. Resource identifier templates
allow consumers to insert data into resource identifiers in predefined
ways, while treating the overall structure of the resource identifiers as
being opaque.

Resource identifiers that are handled in this manner by the service con-
sumer act as a message from the service that is held onto by the con-
sumer and passed back to the service with subsequent requests. These
messages can contain identifiers for entities, session state data, or any
other data the service will need the next time a request comes in for pro-
cessing. Treating resource identifiers as opaque within service consumers
means that we can reduce (or loosen) the coupling between a service
and its consumers. The service can change the content or structure of its
resource identifiers without needing corresponding changes to service
consumer logic.

Resource Identifier Design Guidelines

Here	are	a	few	tips	for	optimizing	resource	identifiers	in	support	of	SOA.	Each	of	these	
can	form	the	basis	of	a	design	standard	in	support	of	the	Canonical	Expression	[434]	
pattern:

	 •	 Try	to	avoid	including	a	variable	part	of	the	URL	as	the	first	path	segment,	or	any-
where	not	preceded	by	a	static	path	segment	describing	the	context.	For	example,
avoid http://invoice.example.com/{invoice}.	Although	we	may	use	this	type	
of	notation	for	simplicity’s	sake	early	in	the	service	capability	modeling	lifecycle,
once	we	enter	the	service-oriented	design	stage	it	can	make	it	difficult	to	extend	
the	namespace.	This	is	because	any	new	path	could	be	interpreted	as	including	
an	invoice	identifier.	Consider	introducing	a	prefix	to	qualify	the	variable	part, for
example	using	http://invoice.example.com/invoice/{invoice}, instead.

13_9780137012510_ch10.indd 199 7/5/12 4:36 PM

200 Chapter 10: Service-Oriented Design with REST

	 •	 Trailing	slashes	usually	indicate	a	collection	of	resources.	One	common	conven-
tion	is	that	a	GET	request	to	a	URL	with	a	trailing	slash	will	retrieve	a	list	of	these	
resources,	while	a	POST	to	the	URL	will	create	a	new	resource.	For	example,
http://invoice.example.com/unpaid/	may	support	a	GET	request	to	obtain	all	
unpaid	invoices,	while	a	POST	to	http://invoice.example.com/invoice/	may	
create	an	invoice	with	a	resource	identifier	of	http://invoice.example.com/
invoice/INV042.	This	again	is	a	departure	from	the	notation	used	during	the	
service-oriented	analysis	project	stage,	where	we	use	the	trailing	slash, together
with the initial slash,	as	delimiters	to	represent	a	resource.

	 •	 Single	out	those	resource	identifiers	that	are	canonical	names	(URNs), and make
these	URLs	as	simple	as	possible.	Avoid	including	a	query	component	in	the	
resource	identifier	and	avoid	special	characters	such	as	‘;’, ‘=’, and ‘&’. For exam-
ple, http://invoice.example.com/?invoice=INV042	is	not	a	good	identifier	
for	invoice	number	42, while http://invoice.example.com/invoice/INV042 is
a	better	choice.	Simpler	identifiers	are	easier	to	embed	into	other	resource	identi-
fiers,	and	easier	for	a	human	to	read	and	understand;	a	prime	requirement	of	the	
Service	Discoverability	(420)	principle.

	 •	 Always	refer	to	canonical	names	(URNs)	by	their	full	resource	identifier.	For	
example, the http://invoice.example.com/query{?customer}	URL	should	
be	expanded	to	http://invoice.example.com/query?customer=http://
customer.example.com/customer/C1234.	This	allows	the	Invoice	service	
to	directly	interact	with	the	customer	resource	for	additional	information	(if	
required),	without	needing	to	construct	its	own	resource	identifier	for	the	
customer.

	 •	 Explicitly	separate	query	parameters	expected	to	be	inserted	by	human	users	or	
service	consumers	into	resource	identifiers	in	the	query	component	of	the	URL.	
For example, http://invoice.example.com/search{?paid,due-date,
min-amount,max-amount,customer}	can	be	interpreted	as	indicating	that	paid,
due-date, min-amount, max-amount, and customer	are	all	likely	to	be	inserted	
into	the	resource	identifier	via	human	input	or	by	a	service	consumer.	The	vocabu-
lary	used	in	the	query	component	of	the	resource	identifier	is	likely	to	come	under	
increased	governance	scrutiny	compared	to	other	components	of	the	resource.

	 •	 Variables	that	a	service	consumer	needs	to	insert	into	URL	templates	can	pro-
duce	undesirable	forms	of	coupling	to	be	introduced	between	the	consumer	and	
the service contract. This is in direct opposition to the design goals of the Ser-
vice	Loose	Coupling	(413)	principle.	Each	variable	to	be	inserted	needs	to	have	

13_9780137012510_ch10.indd 200 7/5/12 4:36 PM

10.2 REST Service Contract Design 201

an	agreed	upon	meaning	among	a	service	and	its	consumers.	The	simplest	way	
to	tackle	this	is	to	standardize	the	names,	syntax,	data	types, and meaning of
variables	across	multiple	services	as	part	of	the	uniform	contract	definition.	It	is	
straightforward	to	consider	standardizing	variable	names	such	as	dtstart and
dtend	to	identify	the	start	and	end	dates	and	times	of	a	given	query.	For	example,
this	type	of	vocabulary	can	be	reused	to	query	an	invoice	service	as	http://
invoice.example.com/query?dtstart=2015-03-06T10:00:00&dtend=

2015-04-06T10:00:00, a calendar of events,	or	a	correspondence	log	for	particu-
lar time periods.

note

Business entities are prime targets for inclusion in a controlled resource
identifier vocabulary. We have already seen examples in this chapter
where a consumer queries the Invoice entity service for a list of invoices
related to a particular customer. In this case, the expansion of this
parameter would be the full resource identifier for that entity. As new
service capabilities are defined, new vocabulary will be discovered. It will
be important to keep the vocabulary up-to-date and to be able to identify
which elements of the vocabulary are genuinely reused in practice across
different service contracts, versus those that are service-specific.

designing with and standardizing rest constraints

Although	 the	 set of REST constraints are,	 individually, separate and distinct design
rules	 with	 corresponding	 design	 goals, there is room for interpretation concerning
whether	each	constraint	should	be	strictly	applied.	Due	to	the	importance	of	standard-
izing	how	services	are	built	as	part	of	a	service	inventory, it is recommended that how
REST	constraints	themselves	are	applied	also	be	clearly	standardized.

Stateless {395}

The	two	basic	interpretations	of	rules	established	by	the	Stateless	{395}	constraint	are:

	 •	 The	looser	interpretation	is	that	session	state	is	any	data	that	a	request	message	
might	refer	to	that	does	not	have	an	explicit	resource	identifier.	Under	this	defini-
tion,	session	state	can	be	given	a	resource	identifier	within	the	service	to	transform	
it	into	service	state.	It	can	then	be	deferred	by	the	service	into	a	database	or	other	
dedicated	repository.	Further	requests	(by	the	same	consumer	or	by	other	con-
sumers)	refer	to	the	state	by	its	resource	identifier	and	so	they	can	be	understood	
independently	of	previous	requests.

13_9780137012510_ch10.indd 201 7/5/12 4:36 PM

202 Chapter 10: Service-Oriented Design with REST

	 •	 A	stricter	interpretation	is	that	session	state	is	any	data	bound	to	a	specific	service	
consumer	that	would	normally	need	to	be	destroyed	when	that	consumer	exits	an	
on-going	service	activity,	or	when	that	consumer	stops	interacting	with	the	ser-
vice. Under this interpretation,	associating	a	resource	identifier	with	the	data	does	
not	transform	it	into	service	state	and	it	must	still	not	be	retained	by	the	service	
between	requests.

The	 usage	 of	 the	 Stateless	 {395}	 constraint	 requires	 a	 clear	 design	 standard,	 both	 in	
regards to the interpretation of the constraint as well as the extent to which it is applied
to	the	service	inventory.	

Additionally,	 if	 any	 exceptions	 to	 or	 violations	 of	 Stateless	 {395}	 are	 allowed, these
need	to	be	well-defined	so	that	there	is	an	opportunity	to	adjust	the	service	inventory’s
underlying	infrastructure	accordingly.	

Cache {398}

As	explained	 in	Chapter	5,	 this	constraint	 requires	 that	any	request	whose	response	
could	potentially	be	reused	for	subsequent	requests	needs	to	incorporate	the	facility	to	
include	cache	control	metadata.	This	constraint	mostly	applies	to	data	retrieval	meth-
ods,	such	as	GET	and	HEAD.	However,	it	can	also	apply	to	some	uses	of	POST	and	other	
forms	of	requests	that	can	be	classified	as	primarily	retrieving	data	from	a	service.

Two	basic	forms	of	caching	exist:

	 •	 A	response	message	is	considered	reusable	for	a	particular	period	of	time.	For	
example, a message containing report data can state that its content will remain
valid	for	24	hours.	This	allows	the	caching	infrastructure	to	continue	returning	
the	same	response	without	having	to	re-invoke	the	service	for	the	duration	of	that	
period.	The	HTTP	header	used	for	this	kind	of	caching	is	Cache-Control with a
maxage	field.

	 •	 A	response	message	is	considered	reusable	only	if	its	validity	is	checked	each	
time	it	is	used.	For	example,	a	log	of	recent	transactions	may	be	reused	until	a	new	
transaction	is	added.	In	this	case,	each	time	a	cache	handles	a	request	it	explic-
itly	checks	with	the	service	to	ensure	that	no	further	transactions	have	occurred	
before	returning	the	cached	response.	The	HTTP	headers	used	for	this	kind	of	
caching are ETag in responses and If-None-Match	in	requests.

In	order	to	decide	whether	to	even	attempt	to	reuse	a	cached	response	the	cache	needs	a	
mechanism	for	determining	whether	two	requests	are	equivalent	for	caching	purposes.	
Requests	 are	 often	 equivalent	 if	 their	 method	 and	 resource	 identifier	 are	 the	 same;	

13_9780137012510_ch10.indd 202 7/5/12 4:36 PM

10.2 REST Service Contract Design 203

however,	request	headers	can	play	a	role	in	whether	requests	are	equivalent	or	not.	In	
support	of	this,	it	can	be	helpful	to	introduce	a	design	standard	regarding	the	usage	of	
the	HTTP	Vary	header	that	can	be	applied	to	identify	which	request	headers	were	used	
as part of generating a response and,	by	a	process	of	elimination, which headers were
ignored.	This	feature	allows	requests	that	are	slightly	different	to	still	reuse	the	same	
cached response.

In	addition	 to	a	 response	being	able	 to	 identify	which	request	headers	were	used	 in	
generating the response,	it	is	helpful	to	have	a	further	design	standard	that	establishes	
a	canonical	form	for	request	messages	so	that	they	can	be	compared	for	equivalence.	
HTTP	has	a	basic	canonicalization	mechanism	that	can	be	used	to	remove	redundant	
whitespace	and	to	merge	duplicate	headers.	

Uniform Contract {400}

HTTP	requires	that	methods	and	media	types	be	“standard.”	In	the	context	of	REST	this	
does	not	simply	mean	standardization,	but	instead	refers	to	“reuse	in	practice”	by	multi-
ple services. Methods,	media	types, headers,	exception	types,	resource	identifier	syntax,
and	any	other	element	of	messages	(other	than	the	specific	resource	identifiers	chosen	
as	part	of	service	contracts	to	expose	service	capabilities)	are	all	required	to	be	reused	
by	multiple	services	in	order	to	comply	with	Uniform	Contract	{400}.	In	some	cases	(as	
described	earlier),	even	parts	of	the	resource	identifiers	may	be	standardized	as	well.

Although	 the	mere	usage	of	a	uniform	contract	 introduces	a	natural	 level	of	 service	
inventory	 standardization,	 there	 are	 aspects	 that	 need	 further	 attention	 and	 custom	
standardization.

Design	standards	need	to	be	in	place	to	address	the	following:

	 •	 New	methods	and	media	types	added	to	the	uniform	contract	need	to	be	clearly	
identified	and	closely	monitored	as	they	progress	toward	a	mature	state.	If	actual	
reuse	by	multiple	service	contracts	does	not	happen,	it	may	be	necessary	to	start	
treating	these	new	extensions	as	being	service-specific.

	 •	 Any	methods	or	media	types	that	are	intended	to	be	service-specific	need	to	be	
governed	as	such	to	ensure	that	the	quantity	of	logic	that	is	directly	exposed	to	
these	extensions	is	minimized	in	favor	of	coupling	logic	to	more	reusable	methods	
and	media	types.

	 •	 Some	service	contracts	may	also	not	lend	themselves	to	compliance	with	the	inven-
tory’s	overarching	uniform	contract.	It	can	therefore	be	useful	to	have	a	design	
standard	that	determines	under	what	circumstances	exceptions	may	be	permitted.

13_9780137012510_ch10.indd 203 7/5/12 4:36 PM

204 Chapter 10: Service-Oriented Design with REST

With	regards	to	the	last	item	on	the	preceding	list,	there	should	be	strong	governance	in	
place	to	ensure	that	before	allowing	service-specific	methods	and	media	types,	uniform	
methods	and	media	types	are	always	carefully	and	thoroughly	considered	first.		

Layered System {404}

Layered	System	{404}	requires	that	consumers	and	services	not	be	able	to	tell	whether	
they	are	communicating	with	each	other	directly, or via a series of intermediaries that
understand	the	uniform	contract.	To	comply	with	this	constraint, new methods need
to	 be	 analyzed	 to	 ensure	 intermediaries	 are	 able	 to	 pass	 requests	 and	 responses	 on	
towards their intended recipients,	and	to	adequately	hide	the	existence	of	intermediar-
ies	when	they	are	present.

One	key	requirement	of	Layered	System	{404}	is	that	enough	information	be	present	in	
each message for it to reach its intended recipient. This means we cannot,	upon	making	
a connection to the service,	strip	out	the	data	that	allowed	that	connection.	For	exam-
ple,	 it	 is	not	valid	to	remove	the	service	name	embedded	within	a	resource	identifier	
after	making	a	connection	to	the	service.	If	the	connection	turned	out	to	really	only	be	
to	an	intermediary	then	the	intermediary	would	not	be	able	to	determine	which	ser-
vice	should	receive	the	message.	Instead,	all	requests	should	include	their	full	resource	
identifier.

Another	requirement	is	that	consumers	should	not	need	to	speak	a	different	protocol,
use	different	methods,	or	use	different	headers	to	communicate	with	an	intermediary	as	
compared	to	communicating	with	an	actual	service.	If	removing	the	intermediary	stops	
the	communication	from	working,	the	architecture	is	in	breach	of	Layered	System	{404}.

sUMMarY of KeY Points

•	 Defining the reuse of uniform contract methods and media types is a
service inventory responsibility, as is enforcing the compliance of these
uniform contract elements to REST constraints as part of design standards.

•	 Services based on different service models will tend to introduce different
service contract design considerations and characteristics.

•	 The use of resource identifiers can be standardized for a given service
inventory at both the syntax and vocabulary levels.

13_9780137012510_ch10.indd 204 7/5/12 4:36 PM

10.2 REST Service Contract Design 205

case stUdY exaMPle

By	 following	 proven	 REST	 service	 contract	 design	 techniques,	 together	 with	 cus-
tom	design	standards	established	specifically	for	the	MUA	enterprise,	MUA	archi-
tects	use	the	service	candidates	modeled	in	Chapter	9	as	input	for	a	service-oriented	
design process.

The	results	of	this	effort	are	documented	in	the	following	sections.

Confer Student Award Service Contract (Task)

A	student	who	submits	an	award	conferral	 application	will	do	 so	 through	a	Web	
browser.	A	separate	user	interface	is	therefore	designed	to	allow	users	to	enter	the	
application	details.	It	is	the	submission	of	this	browser-based	form	that	initiates	the	
task service.

Upon	receiving	the	submission,	a	server-side	script	organizes	the	form	data	into	an	
XML	document	based	on	the	following	media	type:

application/vnd.edu.mua.student-award-conferral-application+xhtml+xml

Example	10.2	provides	a	submitted	application	form	completed	with	sample	data	col-
lected	from	the	human	user.	This	represents	the	data	set	that	kick-starts	and	drives	
the	execution	of	an	entire	instance	of	the	Confer	Student	Award	business	process.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >
 <head>
 <title>Student Award Conferral Application</title>
 </head>
 <body>
 <p>Student:
 <a rel="student"
 href="http://student.mua.edu/student/555333">
 John Smith (Student Number 555333)

 </p>
 <p>Award:
 <a rel="award"
 href="http://award.mua.edu/award/BS/CompSci">
 Bachelor of Science with Computer Science Major

13_9780137012510_ch10.indd 205 7/5/12 4:36 PM

206 Chapter 10: Service-Oriented Design with REST

 </p>
 <p>Event:
 <a rel="event"
 href="http://event.mua.edu/fall-graduation">
 fall graduation event

 </p>
 </body>
</html>

Example 10.2
Sample application data, as submitted to the Web server. This document structure contains both human-readable and
machine-processable information.

Figure	 10.5	 displays	 the	 Confer	 Student	 Award	 ser-
vice	contract.	The	preceding	media	type	is	deliberately	
designed	 to	 include	 human-readable	 and	 machine-
readable	data	in	a	form	suitable	for	long-term	archival.	
The	document	is	submitted	to	a	service	capability	cor-
responding	directly	to	the	Start	capability	defined	in	the	
Confer	Student	Award	service	candidate	(Figure	9.13).

As	also	shown	in	Figure	10.5,	during	the	design	process	
for this service contract it was decided to add new ser-
vice	capabilities	to	provide	the	following	functions:

	 •	 DELETE /task/{id}	–	This	capability	was	added	to	
allow	an	executing	instance	of	the	Confer	Student	Award	business	process	to	be	
terminated.

	 •	 GET /task/{id}	–	This	capability	allows	the	state	of	an	executing	instance	of	the	
Confer	Student	Award	business	process	to	be	queried.	

Note	that	the	sensitive	nature	of	this	kind	of	application	means	that	the	GET /task/
{id}	 capability	 can	 be	 accessed	 only	 by	 authorized	 staff	 and	 by	 the	 student.	 The	
DELETE /task/{id}	capability	is	only	accessible	by	the	student	to	cancel	the	applica-
tion process.

Figure 10.5
The Confer Student Award service
contract.

13_9780137012510_ch10.indd 206 7/5/12 4:36 PM

10.2 REST Service Contract Design 207

Event Service Contract (Entity)

The	Event	entity	service	is	equipped	with	a	GET /event/
{id}	service	capability	used	to	query	event	information	
and	 which	 corresponds	 to	 the	 Get	 Details	 capability	
candidate	from	the	Event	service	candidate	(Figure	9.14).	

During	 the	 service-oriented	 design	 pro-
cess,	 architects	 decided	 to	 add	 further	 GET

/event/{id}/calendar and GET /event/{id}/

description	 capabilities	 (Figure	 10.6)	 that	 allow	 for	
the	retrieval	of	more	specific	event	 information.	These	
capabilities	were	not	added	specifically	in	support	of	the	
Confer	Student	Award	business	process,	but	more	so	to	
provide	a	broader	range	of	anticipated	reusable	functionality.	

Award Service Contract (Entity)

In	addition	to	implementing	the	three	service	capabilities	from	the	original	Award	
service	 candidate	 (Figure	 9.15),	 SOA	 architects	 within	 MUA	 decide	 to	 make	 some	
further	changes.

Back	 in	 Step	 4	 of	 the	 REST	 service	 modeling	 process	 (Chapter	 9)	 MUA	 analysts	
determined	that	the	following	action	was	to	be	encompassed	by	the	Confer	Student	
Award	task	service	logic:

	 •	 Verify	Student	Transcript	Qualifies	for	Award	Based	on	Award	Conferral	Rules

However,	 with	 the	 rules	 being	 specific	 to	 each	 award	 type	 they	 determine	 that	 it	
should	be	the	Award	entity	service	that	applies	the	bulk	of	these	rules.	Nevertheless,
some	generic	checks	do	need	to	be	applied	so	the	logic	is	divided	between	the	Confer	
Student	Award	task	service	and	the	Award	entity	service.

To	avoid	the	task	service	from	needing	to	pass	full	transcript	details	into	the	Award	
entity	service	for	verification,	it	is	decided	to	use	a	code-on-demand	approach.	The	
Award	 entity	 service	 provides	 the	 logic,	 but	 the	 logic	 is	 executed	 by	 the	 task	 ser-
vice.	 The	 decision	 to	 define	 the	 logic	 centrally	 within	 the	 Award	 entity	 service	 is	
justified	based	on	the	need	to	produce	human-readable	output	(for	students), along-
side	machine-readable	output	 (for	 the	Confer	Student	Award	service).	As	a	result,

Figure 10.6
The Event service contract.

13_9780137012510_ch10.indd 207 7/5/12 4:36 PM

208 Chapter 10: Service-Oriented Design with REST

the	 entity	 service	 provides	 a	 new	 GET /award/{id}/

conferral-rules	 service	 capability	 (Figure	 10.7)	 that	
supports	 the	output	of	 two	 formats	 for	 the	 rules	 logic:	
the	 first	 in	 human-readable	 form	 and	 the	 second	 in	 a	
form	that	can	be	readily	embedded	into	the	task	service’s
logic.

MUA	 architects	 choose	 JavaScript	 for	 this	 purpose	
because	 they	 find	 that	 JavaScript	 runtimes	 are	 read-
ily	available	for	many	of	the	technology	platforms	that	
have	 been	 used	 to	 develop	 services	 within	 the	 inven-
tory.	 Choosing	 JavaScript	 over	 other	 technologies	 also	
accounts	for	it	being	the	language	of	choice	for	the	user-
interface	tier	of	the	service	inventory.	

The	 same	 service	 capability	 is	 able	 to	 return	 the	 conferral	 rules	 in	 JavaScript	 or	
as	 human-readable	 HTML.	 The	 decision	 as	 to	 which	 transformation	 to	 carry	 out	
depends on which Accept	header	was	provided	by	the	service	consumer.	For	exam-
ple,	the	Confer	Student	Award	task	service	requests	the	application/javascript
media	type,	while	service	consumers	requiring	human-readable	output	will	request	
the text/html	media	type.

Student Transcript Service Contract (Entity)

The	 Student	 service	 was	 originally	 intended	 as	 a	 centralized	 entity	 service	 that	
would	encompass	all	student-related	functionality	and	data	access.	However, itera-
tions	of	the	REST	service	modeling	process	that	occurred	subsequent	to	the	examples	
covered	in	Chapter	9	resulted	in	a	service	inventory	blueprint	that	revealed	the	Stu-
dent	service	candidate	as	being	far	more	coarse	grained	than	any	other.	This	was	
primarily	due	to	the	complexity	of	the	Student	entity	and	its	relationships	to	other	
related entities.

Upon	review	of	 the	Student	service	candidate	 it	was	determined	to	create	a	set	of	
student-related	entity	services.	One	of	these	more	specialized	variations	became	the	
Student	Transcript	service	candidate	(Figure	10.8).	

Because	the	Confer	Student	Award	business	process	only	requires	access	to	student	
transcript information,	it	only	needs	to	compose	the	Student	Transcript	service, not

Figure 10.7
The Award service contract.

13_9780137012510_ch10.indd 208 7/5/12 4:36 PM

10.2 REST Service Contract Design 209

the	actual	Student	service.	As	shown	in	Figure	10.9,	 the	Student	Transcript	service	
contains	service	capabilities	that	correspond	to	the	service	capability	candidates	pro-
vided	by	the	Student	Transcript	service	candidate.

Figure 10.8
The Student Transcript service candidate that was
defined subsequent to the Student service candidate
from Chapter 9. This service effectively replaces the
Student service in the Confer Student Award service
composition.

Figure 10.9
The Student Transcript service contract.

notification and document service contracts (Utility)

The	Notification	service	and	Document	service	process	similar	human-readable	data.	
Notifications	sent	via	e-mail	or	hard	copy	can	both	be	encoded	as	a	human-readable	
document	format,	such	as	HTML	or	PDF.	

The	Notification	service	is	retained	for	e-mail	notifications	while	the	Document	ser-
vice	has	been	evolved	 into	a	printer-centric	and	postal-delivery-centric	utility	ser-
vice.	The	Confer	Student	Award	 task	 service	 can	send	a	document	 to	 the	 student	
in	the	preferred	format	by	looking	up	the	preferred	delivery	method	in	the	original	
application form.

As	 shown	 in	 Figure	 10.10,	 the	 Notification	 and	 Document	 services	 can	 each	 be	
invoked	with	the	POST	method.	

13_9780137012510_ch10.indd 209 7/5/12 4:36 PM

210 Chapter 10: Service-Oriented Design with REST

The	 sample	 student	 (John	 Smith)	 from	 the	 application	 form	 used	 as	 input	 for	 the	
Confer	 Student	 Award	 task	 service	 has	 nominated	 his	 contact	 preference	 with	 a	
hyperlink	 to	mailto:s555333@student.mua.edu.	 The	 service	 inventory	 standard	
for	handling	such	an	address	is	to	transform	the	URL	into	http://notification.
mua.edu/sender?to=s555333@student.mua.edu	 and	 use	 a	 POST	 method	 for	 its	
delivery.	John	Smith’s	notification	will	be	delivered	via	e-mail	to	this	address.

Figure 10.10
The Notification and Document service contracts.

13_9780137012510_ch10.indd 210 7/5/12 4:36 PM

10.3 Complex Method Design 211

10.3 complex Method design

The	uniform	contract	establishes	a	set	of	base	methods	used	to	perform	basic	data	com-
munication	functions.	As	we’ve explained,	this	high-level	of	functional	abstraction	is	
what	makes	the	uniform	contract	reusable	to	the	extent	that	we	can	position	it	as	the	
sole,	over-arching	data	exchange	mechanism	for	an	entire	inventory	of	services.	Besides	
its	inherent	simplicity,	this	part	of	a	service	inventory	architecture	automatically	results	
in	the	baseline	standardization	of	service	contract	elements	and	message	exchange.	

The	standardization	of	HTTP	on	the	World	Wide	Web	results	in	a	protocol	specification	
that	describes	 the	 things	 that	services	and	consumers	“may,” “should,” or “must” do
to	be	compliant	with	the	protocol.	The	resulting	level	of	standardization	is	intention-
ally	only	as	high	as	it	needs	to	be	to	ensure	the	basic	functioning	of	the	Web.	It	leaves	a	
number	of	decisions	as	to	how	to	respond	to	different	conditions	up	to	the	logic	within	
individual	services	and	consumers.	This	“primitive”	level	of	standardization	is	impor-
tant	 to	 the	Web	where	we	can	have	numerous	 foreign	service	consumers	 interacting	
with	third-party	services	at	any	given	time.

A	 service	 inventory, however, often represents an environment that is private and
controlled	 within	 an	 IT	 enterprise.	 This	 gives	 us	 the	 opportunity	 to	 customize	 this	
standardization	beyond	the	use	of	common	and	primitive	methods.	This	form	of	cus-
tomization	can	be	justified	when	we	have	requirements	for	increasing	the	levels	of	pre-
dictability	and	quality-of-service	beyond	what	the	World	Wide	Web	can	provide.			

For example, let’s	say	that	we	would	like	to	introduce	a	design	standard	whereby	all	
accounting-related	 documents	 (invoices,	 purchase	 orders, credit notes,	 etc.)	 must	 be	
retrieved with logic that,	upon	encountering	a	retrieval	failure,	automatically	retries	the	
retrieval	a	number	of	times.	The	logic	would	further	require	that	subsequent	retrieval	
attempts	 do	 not	 alter	 the	 state	 of	 the	 resource	 representing	 the	 business	 documents	
(regardless	of	whether	a	given	attempt	is	successful).

With	 this	 type	 of	 design	 standard,	 we	 are	 essentially	 introducing	 a	 set	 of	 rules	 and	
requirements	as	to	how	the	retrieval	of	a	specific	type	of	document	needs	to	be	carried	
out.	 These	 are	 rules	 and	 requirements	 that	 cannot	 be	 expressed	 or	 enforced	 via	 the	
base,	primitive	methods	provided	by	HTTP.	Instead,	we	can	apply	them	in	addition	to	
the	level	of	standardization	enforced	by	HTTP	by	assembling	them	(together	with	other	
possible	types	of	runtime	functions)	into	aggregate	interactions.	This	is	the	basis	of	the	
complex method.

13_9780137012510_ch10.indd 211 7/5/12 4:36 PM

212 Chapter 10: Service-Oriented Design with REST

A	complex	method	encapsulates	a	pre-defined	set	of	interactions	between	a	service	and	
a	service	consumer.	These	 interactions	can	 include	 the	 invocation	of	standard	HTTP	
methods.	 To	 better	 distinguish	 these	 base	 methods	 from	 the	 complex	 methods	 that	
encapsulate	them, we’ll	refer	to	base	HTTP	methods	as	primitive methods	(a	term	only	
used	when	discussing	complex	method	design.)

Complex	methods	are	qualified	as	“complex”	because	they:

	 •	 can	involve	the	composition	of	multiple	primitive	methods

	 •	 can	involve	the	composition	of	a	primitive	method	multiple	times

	 •	 can	introduce	additional	functionality	beyond	method	invocation

	 •	 can	require	optional	headers	or	properties	to	be	supported	by	or	included	in	
messages

As	previously	stated,	complex	methods	are	generally	customized	for	and	standardized	
within	a	given	service	inventory.	For	a	complex	method	to	be	standardized, it needs to
be	documented	as	part	of	the	service	inventory	architecture	specification.	We	can	define	
a	number	of	common	complex	methods	as	part	of	a	uniform	contract	that	then	become	
available	for	implementation	by	all	services	within	the	service	inventory.

Complex methods have distinct names. The complex method examples that we cover
shortly	are	called:

	 •	 Fetch	–	A	series	of	GET	requests	that	can	recover	from	various	exceptions.

	 •	 Store	–	A	series	of	PUT	or	DELETE	requests	that	can	recover	from	various	
exceptions.

	 •	 Delta	–	A	series	of	GET	requests	that	keep	a	consumer	in	sync	with	changing	
resource	state.

	 •	 Async	–	An	initial	modified	request	and	subsequent	interactions	that	support	
asynchronous	request	message	processing.

Services	 that	 support	 a	 complex	 method	 communicate	 this	 by	 showing	 the	 method	
name	 as	 part	 of	 a	 separate	 service	 capability	 (Figure	 10.11), alongside the primitive
methods	that	the	complex	method	is	built	upon.	When	project	teams	create	consumer	
programs for certain services,	they	can	determine	the	required	consumer-side	logic	for	
a	complex	method	by	identifying	what	complex	methods	the	service	supports, as indi-
cated	by	its	published	service	contract.

13_9780137012510_ch10.indd 212 7/5/12 4:36 PM

10.3 Complex Method Design 213

note

When applying the Service Abstraction (414) principle to REST service
composition design, we may exclude entirely describing some of the
primitive methods from the service contract. This can be the result of
design standards that only allow the use of a complex method in certain
situations. Going back to the previous example about the use of a com-
plex method for retrieving accounting-related documents, we may have a
design standard that prohibits these documents from being retrieved via
the regular GET method (because the GET method does not enforce the
additional reliability requirements).

It	is	important	to	note	that	the	use	of	complex	methods	is	by	no	means	required.	Out-
side	of	controlled	environments	in	which	complex	methods	can	be	safely	defined, stan-
dardized,	and	applied	in	support	of	the	Increased	Intrinsic	Interoperability	goal, their
use	is	uncommon	and	generally	not	recommended.	When	building	a	service	inventory	
architecture	we	can	opt	to	standardize	on	certain	interactions	through	the	use	of	com-
plex	methods	or	we	can	choose	to	limit	REST	service	interaction	to	the	use	of	primitive	
methods	only.	This	decision	will	be	based	heavily	on	the	distinct	nature	of	the	business	
requirements	addressed	and	automated	by	the	services	in	the	service	inventory.

Despite their name,	complex	methods	are	intended	to	add	simplicity	to	service	inven-
tory	architecture.	For	example, let’s	imagine	we	choose	not	to	use	pre-defined	complex	
methods	 and	 then	 realize	 that	 there	 are	 common	 rules	 or	 policies	 that	 should	 have	
been	applied	to	numerous	services	and	their	consumers.	In	this	case,	we	will	have	built	
multiple	 services	 and	 consumers	 that	 behave	 unpredictably.	 When	 a	 service	 returns	

Figure 10.11
An Invoice service contract displaying two service capabilities
based on primitive methods and two service capabilities based on
complex methods. We can assume that the two complex methods
incorporate the use of the two primitive methods, but we can
confirm this by studying the design specification that documents
the complex methods.

13_9780137012510_ch10.indd 213 7/5/12 4:36 PM

214 Chapter 10: Service-Oriented Design with REST

a redirection code,	we	can’t	be	sure	that	all	consumers	will	act	upon	it, and a tempo-
rary	communication	failure	can	have	unexpected	ramifications.	Lack	of	policy	can	also	
result	 in	unnecessarily	redundant	message	processing	 logic.	The	 fact	 that	 the	 imple-
mentations	will	continue	to	remain	out	of	synch	make	this	a	convoluted	architecture	
that	is	unnecessarily	complex.	This	is	exactly	the	problem	that	the	use	of	complex	meth-
ods is intended to avoid.

The	upcoming	sections	introduce	a	set	of	sample	complex	methods	organized	into	two	
sections:

	 •	 Stateless	Complex		Methods	

	 •	 Stateful	Complex	Methods	

Note	that	these	methods	are	by	no	means	industry	standard.	Their	names	and	the	type	
of	message	interactions	and	primitive	method	invocations	they	encompass	have	been	
customized	to	address	common	types	of	functionality.	

note

The Case Study Example section at the end of this chapter further
explores this subject matter. In this example, in response to specific busi-
ness requirements, two new complex methods (one stateless, the other
stateful) are defined.

stateless complex Methods

This	first	collection	of	complex	methods	encapsulate	message	interactions	that	are	com-
pliant	with	the	Stateless	{395}	constraint.	

Fetch Method

Instead	of	relying	only	on	a	single	invocation	of	the	HTTP	GET	method	(and	its	associ-
ated	headers	and	behavior)	to	retrieve	content,	we	can	build	a	more	sophisticated	data	
retrieval	method	with	features	such	as:

	 •	 automatic	retry	on	timeout	or	connection	failure

	 •	 required	support	for	runtime	content	negotiation	to	ensure	the	service	consumer	
receives	data	in	a	form	it	understands

13_9780137012510_ch10.indd 214 7/5/12 4:36 PM

10.3 Complex Method Design 215

	 •	 required	redirection	support	to	ensure	that	changes	to	the	service	contract	can	be	
gracefully	accommodated	by	service	consumers

	 •	 required	cache	control	directive	support	by	services	to	ensure	minimum	latency,
minimum	bandwidth	usage,	and	minimum	processing	for	redundant	requests

We’ll	refer	to	this	type	of	enhanced	read-only	complex	method	as	a	Fetch.	Figure	10.12	
shows	an	example	of	a	pre-defined	message	interaction	of	a	Fetch	method	designed	to	
perform	content	negotiation	and	automatic	retries.

Figure 10.12
An example of a Fetch complex method comprised of consecutive GET method calls.

Store Method

When	using	the	standard	PUT	or	DELETE	methods	to	add	new	resources, set the state
of	 existing	 resources,	 or	 remove	 old	 resources,	 service	 consumers	 can	 suffer	 request	
timeouts	or	exception	responses.	Although	the	HTTP	specification	explains	what	each	
exception means,	it	does	not	impose	restrictions	as	to	how	they	should	be	handled.	For	
this	purpose,	we	can	create	a	custom	Store	method	to	standardize	necessary	behavior.

The	Store	method	can	have	a	number	of	the	same	features	as	a	Fetch,	such	as	requiring	
automatic	 retry	of	 requests,	 content	negotiation	 support,	 and	support	 for	 redirection	

13_9780137012510_ch10.indd 215 7/5/12 4:36 PM

216 Chapter 10: Service-Oriented Design with REST

exceptions.	Using	PUT	and	DELETE,	it	can	also	defeat	low	bandwidth	connections	by	
always	sending	the	most	recent	state	requested	by	the	consumer, rather than needing to
complete	earlier	requests	first.

The	same	way	that	individual	primitive	HTTP	methods	can	be	idempotent, the Store
method	 can	 be	 designed	 to	 behave	 idempotently.	 By	 building	 upon	 primitive	 idem-
potent methods,	any	repeated,	successful	request	messages	will	have	no	further	effect	
after	the	first	request	message	is	successfully	executed.	

For example, when setting an invoice state from “Unpaid” to “Paid”:

	 •	 a	“toggle”	request	would	not	be	idempotent	because	repeating	the	request	toggles	
the	state	back	to	“Unpaid.”

	 •	 the	“PUT”	request	is	idempotent	when	setting	the	invoice	to	“Paid”	because	it	has	
the same effect,	no	matter	how	many	times	the	request	is	repeated

It	is	important	to	understand	that	the	Store	and	its	underlying	PUT	and	DELETE	requests	
are	requests	to service logic,	not	an	action	carried	out	on	the	service’s	underlying	data-
base.	 As	 shown	 in	 Figure	 10.13,	 these	 types	 of	 requests	 are	 stated	 in	 an	 idempotent	

Figure 10.13
An example of the interaction carried out by a Store complex method.

13_9780137012510_ch10.indd 216 7/5/12 4:36 PM

10.3 Complex Method Design 217

manner	in	order	to	efficiently	allow	for	the	retrying	of	requests	without	the	need	for	
sequence	numbers	to	add	reliable	messaging	support.	

note

Service capabilities that incorporate this type of method are an example
of the application of the Idempotent Capability [470] pattern.

Delta Method

It	is	often	necessary	for	a	service	consumer	to	remain	synchronized	with	the	state	of	a	
changing	resource.	The	Delta	method	is	a	synchronization	mechanism	that	facilitates	
stateless	synchronization	of	the	state	of	a	changing	resource	between	the	service	that	
owns	this	state	and	consumers	that	need	to	stay	in	alignment	with	the	state.		

The	Delta	method	follows	processing	logic	based	on	the	following	three	basic	functions:

	 1.	 The	service	keeps	a	history	of	changes	to	a	resource.

	 2.	 The	consumer	gets	a	URL	referring	to	the	location	in	the	history	that	represents	
the	last	time	the	consumer	queried	the	state	of	the	resource.

	 3.	 The	next	time	the	consumer	queries	the	resource	state,	the	service	(using	the	URL	
provided	by	the	consumer)	returns	a	list	of	changes	that	have	occurred	since	the	
last	time	the	consumer	queried	the	resource	state.

Figure	10.14	illustrates	this	using	a	series	of	GET	invocations.

The service provides a “main”	resource	that	responds	to	GET	requests	by	returning	the	
current	state	of	the	resource.	Next	to	the	main	resource	it	provides	a	collection	of	“delta”
resources	 that	each	return	 the	 list	of	changes	 from	a	nominated	point	 in	 the	history	
buffer.

The	consumer	of	the	Delta	method	activates	periodically	or	when	requested	by	the	core	
consumer	logic.	If	it	has	a	delta	resource	identifier	it	sends	its	request	to	that	location.	
If	it	does	not	have	a	delta	resource	identifier,	it	retrieves	the	main	resource	to	become	
synchronized.	In	the	corresponding	response	the	consumer	receives	a	link	to	the	delta	
for	the	current	point	in	the	history	buffer.	This	link	will	be	found	in	the	Link header
(RFC	5988)	with	relation	type	Delta.

13_9780137012510_ch10.indd 217 7/5/12 4:36 PM

218 Chapter 10: Service-Oriented Design with REST

The	requested	delta	resource	can	be	in	any	one	of	the	following	states:

	 1.	 It	can	represent	a	set	of	one	or	more	changes	that	have	occurred	to	the	main	
resource	since	the	point	in	history	that	the	delta	resource	identifier	refers	to.	In	
this case,	all	changes	in	the	history	from	the	nominated	point	are	returned	along	
with	a	link	to	the	new	delta	for	the	current	point	in	the	history	buffer.	This	link	
will	be	found	in	the	Link	header	with	relation	type	Next.

Figure 10.14
An example of the message interaction encompassed by the Delta complex method.

13_9780137012510_ch10.indd 218 7/5/12 4:36 PM

10.3 Complex Method Design 219

	 2.	 It	may	not	have	a	set	of	changes	because	no	changes	have	occurred	since	its	nomi-
nated	point	in	the	history	buffer,	in	which	case	it	can	return	the	204 No Content
response	code	to	indicate	that	the	service	consumer	is	already	up-to-date	and	can	
continue	using	the	delta	resource	for	its	next	retrieval.

	 3.	 Changes	may	have	occurred,	but	the	delta	is	now	expired	because	the	nominated	
point	in	history	is	now	so	old	that	the	service	has	elected	not	to	preserve	the	
changes.	In	this	situation,	the	resource	can	return	a	410 Gone code to indicate that
the	consumer	has	lost	synchronization	and	should	re-retrieve	the	main	resource.

Delta	resources	use	the	same	caching	strategy	as	the	main	resource.

The	service	controls	how	many	historical	deltas	it	is	prepared	to	accumulate	based	on	
how	much	time	it	expects	consumers	will	take	(on	average)	to	get	up-to-date, or in some
cases	where	a	full	audit	trail	is	maintained	for	other	purposes	the	number	of	deltas	can	
be	indefinite.	The	amount	of	space	required	to	keep	this	record	is	constant	and	predict-
able	regardless	of	 the	number	of	consumers,	 leaving	 it	up	 to	each	 individual	service	
consumer	to	keep	track	of	where	it	is	in	the	history	buffer.

Async Method

This complex method provides	pre-defined	interactions	for	the	successful	and	canceled	
exchange	of	asynchronous	messages.	It	is	useful	for	when	a	given	request	requires	more	
time	to	execute	than	what	the	standard	HTTP	request	timeouts	allow.	

Normally,	if	a	request	takes	too	long,	the	consumer	message	processing	logic	will	time	
out	or	an	intermediary	will	return	a	504 Gateway Timeout response code to the service
consumer.	 The	 Async	 method	 provides	 a	 fallback	 mechanism	 for	 handling	 requests	
and	 returning	 responses	 that	 does	 not	 require	 the	 service	 consumer	 to	 maintain	 its	
HTTP	connection	open	for	the	total	duration	of	the	request	interaction.	

As	shown	in	Figure	10.15,	the	service	consumer	issues	a	request,	but	does	so	specifying	
a	call-back	resource	identifier.	If	the	service	chooses	to	use	this	identifier, it responds
with the 202 Accepted response code,	and	may	optionally	return	a	resource	identifier	
in the Location	header	to	help	it	track	the	place	of	the	asynchronous	request	in	its	pro-
cessing	queue.	When	the	request	has	been	fully	processed,	its	result	is	delivered	by	the	
service,	which	then	issues	a	PUT	or	POST	request	to	the	call-back	address	of	the	service	
consumer.	

If	the	service	consumer	issues	a	DELETE	request	(as	shown	in	Figure	10.16)	while	the	
Async	 request	 is	 still	 in	 the	processing	queue	 (and	before	a	 response	 is	 returned), a

13_9780137012510_ch10.indd 219 7/5/12 4:36 PM

220 Chapter 10: Service-Oriented Design with REST

Figure 10.15
An asynchronous request interaction encompassed by the Async complex method.

Figure 10.16
An asynchronous cancel interaction encompassed by the Async complex method.

separate	pre-defined	interaction	is	carried	out	to	cancel	the	asynchronous	request.	In	
this case,	no	response	is	returned	and	the	service	cancels	the	processing	of	the	request.

If	the	consumer	cannot	listen	for	call-back	requests,	it	can	use	the	asynchronous	request	
identifier	to	periodically	poll	the	service.	Once	the	request	has	been	successfully	han-
dled,	 it	 is	possible	 to	retrieve	 its	 result	using	 the	previously	described	Fetch	method	
before	deleting	the	asynchronous	request	state.	Services	that	execute	either	interaction	
encompassed	by	this	method	must	have	a	means	of	purging	old	asynchronous	requests	
if	service	consumers	are	unavailable	to	pick	up	responses	or	otherwise	“forget” to delete
request	resources.

13_9780137012510_ch10.indd 220 7/5/12 4:36 PM

10.3 Complex Method Design 221

stateful complex Methods

These next complex	methods	use	REST	as	the	basis	of	service	design	but	incorporate	
interactions	that	 intentionally	breach	the	Stateless	{395}	constraint.	Although	the	sce-
narios	represented	by	 these	methods	are	relatively	common	 in	 traditional	enterprise	
application designs,	this	kind	of	communication	is	not	considered	native	to	the	World	
Wide	Web.	The	use	of	stateful	complex	methods	can	be	warranted	when	we	accept	the	
reduction	in	scalability	that	comes	with	this	design	decision.	

Trans Method

The Trans method	essentially	provides	the	interactions	necessary	to	carry	out	a	two-
phase	 commit	 between	 one	 service	 consumer	 and	 one	 or	 more	 services	 (as	 per	 the	
application of the Atomic	Transaction	[432]	pattern).	Changes	made	within	the	transac-
tion	are	guaranteed	to	either	successfully	propagate	across	all	participating	services, or
all	services	are	rolled	back	to	their	original	states.	

This	type	of	complex	method	requires	a	“prepare”	function	for	each	participant	before	
a	final	commit	or	rollback	is	carried	out.	Functionality	of	this	sort	is	not	natively	sup-
ported	by	HTTP.	Therefore,	we	need	to	introduce	a	custom	PREP-PUT	method	(a	vari-
ant	of	the	PUT	method),	as	shown	in	Figure	10.17.	

In	this	example	the	PREP-PUT	method	is	the	equivalent	of	PUT,	but	it	does	not	commit	
the	PUT	action.	A	different	method	name	is	used	to	ensure	that	if	the	service	does	not	

Figure 10.17
An example of a Trans complex method, using a custom primitive method called PREP-PUT.

13_9780137012510_ch10.indd 221 7/5/12 4:36 PM

222 Chapter 10: Service-Oriented Design with REST

understand	how	to	participate	in	the	Trans	complex	method,	it	then	rejects	the	PREP-
PUT	method	and	allows	the	consumer	to	abort	the	transaction.	

To	carry	out	the	logic	behind	a	typical	Trans	complex	method	will	usually	require	the	
involvement	of	a	 transaction	controller	 to	ensure	 that	 the	commit	and	rollback	func-
tions	are	truly	and	reliably	carried	out	with	atomicity.	

Alternative	transaction	models	that	have	varying	degrees	of	compliance	with	Stateless	
{395}	are	further	explored	in	Chapter	12.

PubSub Method

A	 variety	 of	 publish-subscribe	 options	 are	 available	 once	 it	 is	 decided	 to	 intention-
ally	breach	the	Stateless	{395}	constraint.	As	explained	in	the	Event-Driven Messaging
[465]	pattern,	these	types	of	mechanisms	are	designed	to	support	real-time	interactions	
where	a	service	consumer	must	act	immediately	when	some	pre-determined	event	at	a	
given	resource	occurs.	The	Event-Driven	Messaging	[465]	pattern	is	applied	as	an	alter-
native	to	the	repeated	polling	of	the	resource,	which	can	negatively	impact	performance	
if	the	polling	frequency	is	increased	to	detect	changes	with	minimal	delay.	

There	are	various	ways	that	this	complex	method	can	be	designed.	Figure	10.18	illus-
trates	 an	 approach	 that	 treats	 publish-subscribe	 messaging	 as	 a	 “cache-invalidation”
mechanism.

This	form	of	publish-subscribe	interaction	is	considered	“lightweight”	because	it	does	
not	require	services	to	send	out	the	actual	changes	to	the	subscribers.	Instead, it informs
them	that	a	resource	has	changed	by	pushing	out	the	resource	identifier,	and	then	reuses	
an existing,	cacheable	Fetch	method	as	the	service	consumers	pull	the	new	representa-
tions	of	the	changed	resource.

The	amount	of	state	required	to	manage	these	subscriptions	is	bound	to	one	fixed-sized	
record	for	each	service	consumer.	 If	multiple	 invalidations	queue	up	for	a	particular	
subscribed	event,	they	can	be	folded	together	into	a	single	notification.	Regardless	of	
whether	the	consumer	receives	one	or	multiple	invalidation	messages,	it	will	still	only	
need	to	invoke	one	Fetch	method	to	bring	itself	up-to-date	with	the	state	of	its	resources	
each time it sees one or more new invalidation messages.

The	PubSub	method	can	be	further	adjusted	to	distribute	subscription	load	and	session	
state	storage	to	different	places	around	the	network.	This	technique	can	be	particularly	
effective	within	cloud-based	environments	that	naturally	provide	multiple,	distributed	
storage	resources.

13_9780137012510_ch10.indd 222 7/5/12 4:36 PM

10.3 Complex Method Design 223

sUMMarY of KeY Points

•	 When designing both the uniform contract and individual service contracts,
we can consider creating complex methods as part of the functions offered
by the contracts.

•	 Complex methods encompass the aggregation of multiple primitive HTTP
methods or the repeated execution of a single primitive HTTP method,
along with other functional features that are part of predefined message
interactions.

•	 Complex methods are ideally standardized so that the interaction behavior
is consistent across all services and consumers that use them.

•	 Both stateless and stateful complex methods can be designed, although the
latter variation is not REST-compliant.

Figure 10.18
An example of a PubSub complex method based on cache invalidation. When the service determines that
something has changed on one or more resources, it issues cache expiry notifications to its subscribers. Each
subscriber can then use a Fetch complex method (or something equivalent) to bring the subscriber up-to-date
with respect to the changes.

4: Resource changed()

: Consumer : Service

2: SUBSCRIBE(resource, callback resource)

3: Created(subscription resource)

1: Start Request()

6: OK

7: Begin fetch()

5: EXPIRE(callback resource)

9: OK(cache metadata, representation)

8: GET(resource, content negotiation metadata)

10: Unsubscribe()

12: OK

11: DELETE(subscription resource)

13_9780137012510_ch10.indd 223 7/5/12 4:36 PM

224 Chapter 10: Service-Oriented Design with REST

case stUdY exaMPle

The	MUA	team	responsible	for	service	design	encounters	a	number	of	requirements	
for	accessing	and	updating	resource	state.	

For	example:

	 •	 One	service	consumer	needs	to	atomically	read	the	state	of	the	resource, perform
processing,	and	store	the	updated	state	back	to	the	resource.

	 •	 Another	service	consumer	needs	to	support	concurrent	user	actions	that	modify	
the	same	resource.	These	actions	update	certain	resource	properties	while	others	
need to remain the same.

Allowing	individual	service	consumers	to	contain	different	custom	logic	 that	per-
forms	 these	 types	 of	 functions	 will	 inadvertently	 lead	 to	 problems	 and	 runtime	
exceptions	when	any	two	service	consumers	attempt	updates	to	the	same	resource	
at the same time.

MUA	architects	conclude	that	the	simplest	way	to	avoid	this	is	to	introduce	a	new	
complex	 method	 that	 ensures	 that	 a	 resource	 is	 locked	 while	 being	 updated	 by	 a	
given	consumer.	Using	the	rules	of	optimistic	locking,	an	approach	commonly	tradi-
tionally	used	with	database	updates,	they	are	able	to	create	a	complex	method	that	
is	stateless	and	takes	advantage	of	existing	standard	features	of	the	HTTP	protocol.	
They	name	the	method	“OptLock”	and	write	up	an	official	description	that	is	made	
part	of	the	uniform	contract	profile:

optlock complex Method

If	 two	separate	service	consumers	attempt	 to	update	 the	state	of	a	 resource	at	 the	
same time,	their	actions	will	clearly	conflict	with	each	other	as	the	outcome	depends	
on	the	order	in	which	their	requests	reach	the	service.	The	OptLock	method	(Figure	
10.19)	addresses	this	problem	by	providing	a	means	by	which	a	service	consumer	can	
determine	whether	the	state	of	a	resource	has	changed	since	it	was	last	read	by	the	
consumer	before	attempting	an	update.

Specifically,	a	consumer	will	first	retrieve	the	current	state	associated	with	a	resource	
identifier	 using	 the	 Fetch	 method.	 Along	 with	 the	 data	 the	 consumer	 receives	 an	
“ETag.”	ETag	is	a	concept	from	HTTP	that	uniquely	identifies	the	version	of	a	resource	

13_9780137012510_ch10.indd 224 7/5/12 4:36 PM

10.3 Complex Method Design 225

in	an	opaque	way.	Whenever	the	resource	changes	state	its	ETag	is	guaranteed	to	be	
different.	When	 the	 service	 consumer	 initiates	a	Store,	 it	does	 so	conditionally	by	
requesting	the	service	to	only	honor	the	Store	interaction	if	the	resource’s ETag still
matches the one that it had when fetched. This is done with the If-Match header.
The	service	can	use	the	ETag	value	in	the	condition	to	detect	whether	the	resource	
state	has	been	changed	in	the	meantime.

The	OptLock	complex	method	does	not	 introduce	any	new	 features	 to	HTTP,	 but	
instead	introduces	new	requirements	for	handling	GET	and	PUT	requests.	Specifi-
cally,	the	GET	request	must	return	an	ETag	value	and	the	PUT	request	must	process	
the If-Match	 header.	 And,	 if	 the	 resource	 has	 changed,	 the	 service	 must	 further	
guarantee	not	to	carry	out	the	PUT	request.	

There	are	several	techniques	for	computing	ETags.	Some	compute	a	hash	value	out	
of	the	state	information	associated	with	the	resource,	some	simply	keep	a	“last modi-
fied”	timestamp	for	each	resource,	and	others	track	the	version	of	the	resource	state	
explicitly.

Figure 10.19
An example of an OptLock complex method.

13_9780137012510_ch10.indd 225 7/5/12 4:36 PM

226 Chapter 10: Service-Oriented Design with REST

The	 OptLock	 method	 may	 not	 scale	 effectively	 for	 high	 concurrent	 access	 to	 a	
particular	 resource.	 If	 consumer	 update	 requests	 are	 denied	 with	 an	 HTTP	 409
Conflict response code,	 the	 OptLock	 method	 prescribes	 how	 the	 consumer	 can	
recover	by	fetching	a	newer	version	of	the	resource	over	which	they	have	to	re-com-
pute	the	change	and	retry	the	Store	method.	However,	this	may	fail	again	due	to	a	
conflicting	update	request.	Service	consumers	that	 interact	with	a	resource	 in	this	
way	rely	on	that	particular	resource	having	relatively	low	rates	of	write	access.

The	OptLock	complex	method	becomes	available	as	part	of	the	uniform	contract	and	
is	implemented	by	several	services.	However,	scenarios	emerge	where	a	multiple	con-
sumers	attempt	to	modify	the	resource	at	the	same	time,	causing	regular	exceptions	
and	 failed	 updates.	 These	 situations	 occur	 during	 peak	 usage	 times	 and	 because	
concurrent	usage	volume	is	expected	to	increase	further, it is determined that a more
efficient	means	of	serializing	updates	to	the	resource	needs	to	be	established.

It	is	proposed	that	the	OptLock	complex	method	be	changed	to	perform	pessimistic	
locking instead,	as	per	the	following	PesLock	complex	method	description:	

Peslock complex Method

Pessimistic	locking	provides	greater	flexibility	and	certainty	than	optimistic	locking.	
From a REST perspective,	this	comes	at	the	cost	of	introducing	stateful	interactions	
and	limiting	concurrent	access	while	the	pessimistic	lock	is	held.	

As	shown	in	Figure	10.20,	the	WebDAV	extensions	to	HTTP	provide	locking	primi-
tives	that	can	be	used	within	a	composition	architecture	that	intentionally	breaches	
the	Stateless	{395}	constraint.	One	consumer	may	lock	out	others	from	accessing	a	
resource,	so	care	must	be	taken	that	appropriate	access	control	policies	are	in	place.	
Consumers	can	also	fail	while	the	lock	is	held,	which	means	that	locks	must	be	able	
to	time	out	independently	of	the	consumers	that	register	them.	

This	way,	the	service	consumer	would	be	able	to	lock	the	resource	for	as	long	as	it	
takes to read the state,	modify	 it,	 and	write	 it	back	again.	Although	other	 service	
consumers	would	still	encounter	exceptions	while	attempting	to	update	the	resource	
at	the	same	time	as	the	consumer	that	has	locked	it,	 it	 is	deemed	preferable	to	the	
unpredictability	of	managing	the	resource	as	part	of	an	optimistic	locking	model.

13_9780137012510_ch10.indd 226 7/5/12 4:36 PM

10.3 Complex Method Design 227

This	solution	is	not	embraced	by	all	of	the	MUA	architects	because	retaining	the	lock	
on	the	resource	requires	that	the	Stateless	{395}	constraint	be	breached.	It	could	fur-
ther	lead	to	the	danger	of	stale	locks	starting	to	impact	performance	and	scalability.	
In	particular,	unless	proper	measures	are	taken	to	ensure	that	only	authorized	con-
sumers	may	lock	a	resource,	this	exposes	the	resources	to	denial	of	service	attacks	by	
malicious	consumers	that	could	lock	out	all	other	consumers.

After	 further	 discussion,	 a	 compromise	 is	 reached.	 The	 OptLock	 method	 will	 be	
attempted	 first.	 As	 a	 fallback,	 if	 the	 consumer	 tries	 three	 times	 and	 fails, it will
attempt	the	stateful	PesLock	method	to	ensure	it	is	able	to	complete	the	action.

Figure 10.20
An example of a PesLock complex method.

13_9780137012510_ch10.indd 227 7/5/12 4:36 PM

	SOA_REST_Highres6
	symbol legend
	SOA_with_REST
	13_9780137012510_ch10

