
SOA with Java
Realizing Service-Orientation

with Java Technologies

Thomas Erl, Andre Tost,
Satadru Roy, and Philip Thomas

PRENTICE HALL

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO

NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID

CAPE TOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

Contents at a Glance
Foreword . xix

Chapter 1: Introduction .1

Chapter 2: Case Study Examples .11

PART I: FUNDAMENTALS
Chapter 3: Fundamental SOA Concepts .21

Chapter 4: Basic Java Distributed Technologies . 39

Chapter 5: Web-Based Service Technologies .81

Chapter 6: Building Web-Based Services with Java . 111

PART II: SERVICES
Chapter 7: Service-Orientation Principles with Java Web-Based Services 139

Chapter 8: Utility Services with Java .211

Chapter 9: Entity Services with Java .261

PART III: SERVICE COMPOSITION AND INFRASTRUCTURE
Chapter 10: Task Services with Java . .307

Chapter 11: Service Composition with Java . 335

Chapter 12: ESB as SOA Infrastructure .379

PART IV: APPENDICES
appendix a: Case Study Conclusion . 405

appendix B: Service-Orientation Principles Reference . 409

appendix C: SOA Design Patterns Reference .425

appendix d: The Annotated SOA Manifesto .519

About the Authors . 533

About the Foreword Contributor . 535

About the Contributors . .537

Index . 539

Chapter 7

Service-Orientation Principles with
Java Web-Based Services
7.1 Service Reusability

7.2 Standardized Service Contract

7.3 Service Loose Coupling

7.4 Service Abstraction

7.5 Service Composability

7.6 Service Autonomy

7.7 Service Statelessness

7.8 Service Discoverability

Building services for service-oriented solutions requires the application of the
service-orientation paradigm whose established design principles drive many

Java service contract and implementation decisions. In certain cases, the programming
language and runtime environment used for services can also be influenced by these
guiding principles. This chapter visits each of the eight service-orientation principles in
depth to highlight considerations specific to design and development with Java.

NOTE

The service-orientation principles are formally documented in the series
title SOA Principles of Service Design. Concise profiles of the principles
are also available in Appendix B and at www.serviceorientation.com.

7.1 Service Reusability

The following are common design characteristics associated with reusable services:

	 •	 The	service	is	defined	by	an	agnostic	functional	context.

	 •	 The	service	logic	is	highly	generic.

	 •	 The	service	has	a	generic	and	extensible	contract.

	 •	 The	service	logic	can	be	accessed	concurrently.

Let’s take a closer look at each of these characteristics in relation to Java.

Agnostic Functional Contexts

Ensuring that the logic encapsulated by a service is agnostic to any particular func-
tional	context	allows	for	the	building	of	service	interfaces	independent	of	one	particu-
lar	business	process	or	 functional	domain.	The	 term	“context”	 refers	 to	 the	 service’s	
functional	scope.	An	agnostic	functional	context	is	not	specific	to	any	one	purpose	and	
is	therefore	considered	multi-purpose.	A	non-agnostic	functional	context,	on	the	other	
hand, is intentionally single-purpose.

A checkpoint that can be part of a regular code review or service interface quality gate
is to look at the imports in a Java interface or implementation class for a service. Java

7.1 Service Reusability 5

interfaces and classes are often structured according to the applicable business domain,
and focusing on the list of imported packages can help identify dependencies in the
code.	Returning	to	the	simplified	order	management	example,	the	Java	service	interface	
for	the	Credit	Check	service	is	seen	in	Example	7.1.

import com.acme.businessobjects.om.Order;
public interface CreditCheck {
 public boolean hasGoodCredit(Order order);
}

Example 7.1

The import statement indicates that the service logic depends on the functional con-
text	of	order	management.	Such	a	dependency	cannot	always	be	avoided	if	a	service	
is developed specifically for a particular business domain at the cost of its reusability.
Utility	services	are	generally	agnostic	and	reusable,	as	explained	in	Chapter	8.

Highly Generic Service Logic

Generic Java service logic refers to logic independent of its service contract. In the Java
world, this means that a Java service interface is created with no mapping for the data
types referenced in the service contract.

The javax.xml.ws.Provider interface avoids dependency on the service contract
when using the JAX-WS programming model for SOAP-based Web services. An incom-
ing message can be received by the service as a SAAJ javax.xml.soap.SOAPMessage
with the Provider interface, which allows the entire message to be parsed or navigated
as	a	DOM	tree,	as	seen	in	Example	7.2.

@ServiceMode(value=Service.Mode.MESSAGE)
@WebServiceProvider()
public class GenericProviderImpl implements
 Provider<javax.xml.soap.SOAPMessage> {
 public SOAPMessage invoke(SOAPMessage message) {
 // read and process SOAPMessage...
 }
}

Example 7.2

For the same SOAP-based Web service, the request message can be alternatively read as
a javax.xml.transform.Source.	As	shown	in	Example	7.3,	the	message	can	be	treated	

6 Chapter 7: Service-Orientation Principles with Java Web-Based Services

as a plain XML document with no relationship to SOAP. Only the payload of the request
message can be retrieved. Developers can ignore the SOAP envelope or SOAP header to
focus on the content in the body of the message.

@ServiceMode(value=Service.Mode.PAYLOAD)
@WebServiceProvider()
public class GenericProviderImpl implements
 Provider<javax.xml.transform.Source> {
 public Source invoke(Source source) {
 // read and process SOAPMessage...
 }
}

Example 7.3

In	both	Examples	7.2	and	7.3,	 the	response	data	returns	 in	the	same	way	the	request	
data was received. If the request is received in an object of type SOAPMessage, then a
new SOAPMessage object must be built for the response. Correspondingly, a new Source
object must be returned if Source is used.

Generic Java types can capture the appropriate MIME media type or resource repre-
sentation format produced or consumed by a target resource when building a REST
service.	For	 text-based	 request/response	entities,	 Java	String, char[], and the char-
acter-based java.io.Reader or Writer interfaces can be used in the resource meth-
ods. For completely generic entity representations, which can include binary content, a
java.io.InputStream, OutputStream, or a raw stream of bytes can be used as byte[].
For XML-based resource representations, the javax.xml.transform.Source type can
be used to handle XML documents at a higher level than a raw stream.

As	seen	in	Example	7.4,	a	slightly	reworked	customer	resource	example	of	the	REST	ser-
vice from the Chapter 6 uses an InputStream.	The	contents	of	an	entity	are	extracted	in	
the incoming request to keep the service contract generic.

@Post
@Consumes("application/xml")
public void createCustomer(
 InputStream in){
 //extract customer from request
 Customer customer = extractCustomer(in);
 //create customer in system;
}

Example 7.4

7.1 Service Reusability 7

Similarly, javax.xml.transform.Source	 can	extract	 the	 customer	 information	 from	
the incoming request. JAX-RS relies on a bottom-up service design philosophy for
building	REST	APIs	 except	when	using	WADL.	Using	 generic	 types,	 such	 as	java.
lang.Object or byte[], on a JAX-RS resource interface should be sufficient to keep the
service contract generic. However, consider what corresponding data types will be used
in the WSDL for SOAP-based Web services.

Avoid the use of concrete data types on the Java service interface. The payload of a
message is cast into a Java object, such as a byte array or string. The service contract,
such as the WSDL for a Web service, must match the generic type, such as java.lang.
Object maps to xsd:anyType, byte[], which maps to xsd:hexBinary, and java.lang.
String maps to xsd:string. The matching generic types require specific code to be
developed in both the service consumer and service for the data to be inserted into the
request/response	messages.

In	Example	7.5,	the	public	class	employs	a	byte array on its interface to hide the details
of the data processed by the service.

@WebService
public class OrderProcessing {
 public void processOrder(Order order,
 byte[] additionalData) {
 // process request...
 }
}

Example 7.5

Supertypes	in	the	service	interface	can	aid	in	generalizing	a	service	contract.	For	exam-
ple, a service returns detailed account information for a bank’s customer. When creat-
ing a data model for the different types of information provided by the different types
of accounts, take advantage of inheritance in XML Schema. A superclass called Account
can be created in Java, with a number of subclasses defined for each type of account,
such as checking, savings, loans, and mortgages. A return type of Account which
includes all of the different types of accounts can be specified in the service interface.

The considerations for supertypes are the same for both SOAP and REST services. As
in	both	cases,	 the	XML	Java	marshaling/unmarshaling	is	handled	by	JAXB	for	XML	
and	MOXy	or	JSON-P	for	JSON.	MOXy	is	a	framework	for	marshaling/unmarshaling	
between JSON and Java objects. JSON-P (Java API for JSON Processing) supports low-
level JSON parsing in Java EE 7.

8 Chapter 7: Service-Orientation Principles with Java Web-Based Services

A	generic	service	 implementation	can	serve	multiple	types	of	request/response	mes-
sages, which generally increases reuse opportunities. However, the service logic must
be implemented to handle different types of messages. Type-specific code uses lan-
guage-specific data types. Tooling can generate code that automatically parses mes-
sages into the right Java objects, although at the cost of increased coupling. If generic
types are used, the processing of incoming and outgoing messages is left to the service
implementer.	However,	generic	types	offer	greater	flexibility	in	terms	of	type-indepen-
dence and loose coupling.

Generalizing	service	logic	also	applies	to	the	service	consumer.	For	example,	JAX-WS	
defines a generic service invocation API using the javax.xml.ws Dispatch interface.
Services can be invoked with unknown interfaces when the service consumer code is
developed. Similar to how the use of the Provider interface supports handling requests
from different types of service consumers, the use of the Dispatch API allows a ser-
vice consumer to interact with different types of services. For REST service clients, if a
JAX-RS implementation is used, all the generic Java types the JAX-RS implementation
supports can be used to build requests and consume responses. However, generic ser-
vice logic requires the client code to handle different types of messages and have some
knowledge	about	the	message	formats	expected.

Generic and Extensible Service Contracts

Service logic can be made generic for reuse across a wide range of scenarios and adapted
to changes in its environment, such as by changing and evolving services or service con-
sumers. A service contract can be made generic by restricting the dependencies on data
types referred to in the service contract and limiting the services composed inside the
service logic to a minimum. When translated into Java-specific terms, reduce or elimi-
nate the number of business-domain-specific classes in the service implementation.

Creating a generic service contract means applying generic types like string, hex-
Binary, or anyType in the schema type definitions for a Web service. Alternatively,
message formats can be defined in a service contract with schema inheritance to use
common supertypes, and the runtime allowed to determine which concrete subtype
is used. Generic types are not only true for the top-level elements in a message but can
also	be	used	within	a	type	definition.	In	Example	7.6,	the	schema	describes	a	Customer
type with a number of well-defined fields and a generic part.

7.1 Service Reusability 9

<xs:complexType name="Customer">
 <xs:sequence>
 <xs:element name="accounts" type="ns:Account"
 nillable="true" maxOccurs="unbounded"
 minOccurs="0"/>
 <xs:element name="address" type="ns:Address"
 minOccurs="0"/>
 <xs:element name="customerId" type="xs:string"
 minOccurs="0"/>
 <xs:element name="name" type="ns:Name" minOccurs="0"/>
 <xs:element name="orderHistory" type="ns:OrderArray"
 nillable="true" maxOccurs="unbounded"
 minOccurs="0"/>
 <xs:any/>
 </xs:sequence>
</xs:complexType>

Example 7.6

When	used	in	a	service	contract,	the	schema	in	Example	7.6	allows	the	service	to	process	
messages	that	have	a	fixed	part	at	the	beginning	and	a	variable	part	at	the	end,	which	is	
represented by the <xs:any> element. SOAP-based Web services can use the Dispatch
APIs in the service logic and Provider APIs in the service consumer logic without affect-
ing how the service contract is built.

Service consumer logic can be implemented generically even if a detailed and specific
service contract is provided. For REST services, the same considerations hold true for
resource representations. XML-based representations can use highly specific types
while the JAX-RS resource class can leverage generic Java types. The programmer then
becomes responsible for performing the type mapping between XML and Java in the
service logic.

Concurrent Access to Service Logic

A particular instance of a shared service will almost always be used by multiple service
consumers simultaneously at runtime. How the service is deployed and the character-
istics of the service’s runtime environment as influences on service reuse are significant
design considerations.

For	example,	each	service	request	starts	a	new	process	that	executes	the	service	logic	
for the request, which ensures that the processing of one request does not affect the
processing	of	another	request.	Each	execution	is	completely	independent	of	other	execu-
tions and creates a new thread in the process. However, starting a new process is a

10 Chapter 7: Service-Orientation Principles with Java Web-Based Services

relatively	expensive	operation	in	terms	of	system	resources	and	execution	time	in	most	
runtime environments. Sharing services in this way is inefficient.

All	service	requests	executed	within	the	same	process	share	all	the	resources	assigned	
to that process, which provides a lightweight method of serving multiple concurrent
requests	to	the	same	service.	Starting	a	new	thread	is	an	inexpensive	operation	on	most	
systems. Most, if not all, Web service engines work this way. Implementing services
in a multithreaded environment requires adherence to the basic rules of concurrent
Java programming.

CASE STUDY EXAMPLE

As part of an initiative to comply with recently introduced legal obligations, the
NovoBank IT team decides to create a Document Manager service that stores docu-
ments for auditing purposes. The service supports storing and retrieving XML docu-
ments.	To	maximize	the	reusability	of	this	service,	the	NovoBank	IT	team	creates	a	
generic	service	contract	and	flexible	service	implementation	to	handle	different	types	
of	documents,	which	can	be	extended	over	time.

Initially, the service will have the operations of store and retrieve. The ser-
vice contract does not imply any structure of the documents stored, as shown in
Example	7.7.

<definitions targetNamespace="http://utility.services.novobank.com/"
 name="DocumentManagerService" xmlns:tns="http://utility.services.
 novobank.com/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema version="1.0" targetNamespace="http://utility.
 services.novobank.com/" xmlns:xs="http://www.w3.org/2001/
 XMLSchema">
 <xs:element name="retrieve" type="ns1:retrieve"
 xmlns:ns1="http://utility.services.novobank.com/"/>
 <xs:complexType name="retrieve">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="retrieveResponse" type="ns2:retrieveResponse"
 xmlns:ns2="http://utility.services.novobank.com/"/>

7.1 Service Reusability 11

 <xs:complexType name="retrieveResponse">
 <xs:sequence>
 <xs:any processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="store" type="ns3:store"
 xmlns:ns3="http://utility.services.novobank.com/"/>
 <xs:complexType name="store">
 <xs:sequence>
 <xs:any processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="storeResponse" type="ns4:storeResponse"
 xmlns:ns4="http://utility.services.novobank.com/"/>
 <xs:complexType name="storeResponse"/>
 </xs:schema>
 </types>
 <message name="store">
 <part name="parameters" element="tns:store"/>
 </message>
 <message name="storeResponse">
 <part name="parameters" element="tns:storeResponse"/>
 </message>
 <message name="retrieve">
 <part name="parameters" element="tns:retrieve"/>
 </message>
 <message name="retrieveResponse">
 <part name="parameters" element="tns:retrieveResponse"/>
 </message>
 <portType name="DocumentManager">
 <operation name="store">
 <input message="tns:store"/>
 <output message="tns:storeResponse"/>
 </operation>
 <operation name="retrieve">
 <input message="tns:retrieve"/>
 <output message="tns:retrieveResponse"/>
 </operation>
 </portType>
 <binding name="DocumentManagerPortBinding"
 type="tns:DocumentManager">
 ...
 </binding>
 <service name="DocumentManagerService">
 ...

12 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 </service>
</definitions>

Example 7.7
NovoBank’s service contract for the Document Manager service is deliberately generic.

Example	 7.7	 shows	 that	 the	 content	 of	 the	 stored	messages	 is	 represented	 by	 an	
<xs:any/> element, which means that any well-formed XML can be inserted in the
content. The <xs: any/> element allows the Document Manager service to be reused
across many different types of messages and documents.

The	 development	 team	 decides	 to	 create	 a	 flexible	 implementation	 of	 the	 service	
which is independent of the specific type of document being sent or retrieved. The
service	must	extend	without	affecting	the	existing	implementation,	preparing	sup-
port	for	more	specific	processing	of	specific	document	types.	A	flexible	implemen-
tation is achieved with a handler and factory. The implementation leverages the
javax.xml.ws.Provider interface and delegates the processing of each message to
a handler. The handler instance is then retrieved via a factory.

Example	7.8	shows	the	implementation	class	for	the	Document	Manager	service	in	
the detailed source code.

package com.novobank.services.utility;
import javax.xml.transform.Source;
import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@ServiceMode(value=Service.Mode.PAYLOAD)
@WebServiceProvider
public class DocumentManager implements Provider<Source> {
 public Source invoke(Source source) {
 DocumentHandler handler =
 DocumentHandlerFactory.instance().getHandler(source);
 handler.process(source);
 return null;
 }
}

Example 7.8
The implementation of the Document Manager service utilizes a factory to retrieve a handler.

7.1 Service Reusability 13

This class implements the Provider interface, so that any invocation of the service is
directed to the invoke() method. The @ServiceMode annotation indicates that only
the actual content of the SOAP body should be passed into the implementation.

In the implementation of the invoke() method, a single instance of a class called
DocumentHandlerFactory is used to retrieve a DocumentHandler for this message.
Example	7.9	shows	the	source	code	for	the	DocumentHandler interface.

package com.novobank.services.utility;
import javax.xml.transform.Source;
public interface DocumentHandler {
 public void process(Source source);
}

Example 7.9
The source code for the DocumentHandler interface

The DocumentHandler interface only defines the process() method, which processes
the message. Different implementations of the interface that process messages in dif-
ferent	ways	can	exist.	The	message	content	is	passed	into	the	process() method as a
stream of type javax.xml.transform.Source. When revisiting the source code for
the	Document	Manager	service	in	Example	7.2,	the	message	returned	by	the	factory	
can be seen to be passed to the handler.

A	part	of	the	source	code	for	the	factory	is	presented	in	Example	7.10.

package com.novobank.services.utility;
import javax.xml.transform.Source;
public class DocumentHandlerFactory {
 protected static DocumentHandlerFactory theInstance = new
 DocumentHandlerFactory();
 public static DocumentHandlerFactory instance() {
 return theInstance;
 }
 protected DocumentHandlerFactory() {}
 public DocumentHandler getHandler(Source source) {
 DocumentHandler handler = null;
 // the code where the message is parsed and
 // the appropriate handler is retrieved would be here.
 return handler;

14 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 }
}

Example 7.10
The DocumentHandlerFactory source code

The message is parsed to the point where an appropriate handler can be found. Han-
dlers are registered via several mechanisms that can include hardcoding into the
factory class, retrieval from a file, or lookup in a registry. The concrete DocumentHan-
dler implementation chosen for a particular message is often based on the root ele-
ment of the passed message. The root element typically provides adequate indication
of the nature of the message.

Using the factory mechanism, where the service implementation class calls a factory
to retrieve a handler to process the message, allows new handlers to be later added
without	affecting	the	existing	code.	The	combination	of	a	generic	service	definition	
using the <xs:any/>	element,	a	flexible	service	implementation	using	the	Provider
interface,	and	a	factory	to	delegate	the	processing	of	the	message	ensures	maximum	
reusability of the service across a variety of environments and domains.

SUMMARY OF KEY POINTS

• For SOAP-based Web services, the JAX-WS standard offers ways of imple-
menting service logic as generic and therefore capable of handling different
types of messages.

• For REST services, Java generic types can be used in JAX-RS-based
resource implementations . The request/response entities are treated as a
raw sequence of bytes or characters.

• Using generic data types for domain entities or resource representations
allows the service to be reused across a greater number of potential
service consumers .

7.2 Standardized Service Contract 15

7.2 Standardized Service Contract

A foundational criterion in service-orientation is that a service have a well-defined
and standardized contract. When building Web services with SOAP and WS-*, por-
table machine-readable service contracts are mandatory between different platforms
as WSDL documents and associated XML schema artifacts describing the service data
model. The finite set of widely used HTTP verbs for REST services form an implicit ser-
vice contract. However, describing the entity representations for capture in a portable
and machine-independent format is the same as SOAP and WS-*.

For REST services, capturing and communicating various aspects of resources can be
necessary, such as the set of resources, relationships between resources, HTTP verbs
allowed on resources, and supported resource representation formats. Standards, such
as WADL, can be used to satisfy the mandatory requirements. Having a standards-
based	service	contract	exist	separate	from	the	service	logic,	with	service	data	entities	
described in a platform-neutral and technology-neutral format, constitutes a service by
common definition. Even the self-describing contract of HTTP verbs for a REST service
establishes a standards-based service contract. Recall the standards used for service
contracts,	such	as	WSDL/WADL	and	XML	Schema,	from	Chapter	5.

Top-Down vs. Bottom-Up

Ensuring that services are business-aligned and not strictly IT-driven is necessary
when identifying services for a service portfolio in an SOA. Services are derived from a
decomposition of a company’s core business processes and a collection of key business
entities. For a top-down approach, services are identified and interfaces are designed
by creating appropriate schema artifacts to model either the operating data and WSDL-
based service contracts, or model REST resources and resource methods. The completed
service interface is implemented in code.

However, enterprises can have irreplaceable mission-critical applications in place.
Therefore,	another	aspect	of	finding	services	is	assessing	existing	applications	and	com-
ponents to be refactored as services for a bottom-up approach. This includes creating
standard service contracts, such as WSDL definitions or REST resource models, for the
existing	components.

Tooling provides support for both approaches in a Java world. For SOAP-based Web
services, tools play a more prominent role than in Java-based REST services. JAX-WS
defines	the	wsimport	tool,	which	takes	an	existing	WSDL	definition	as	input	to	generate	
Java skeletons. These skeletons can be used as the starting point for implementing the

16 Chapter 7: Service-Orientation Principles with Java Web-Based Services

actual	service	logic.	Similarly,	the	wsgen	tool	generates	WSDL	from	existing	Java	code.	
The	mapping	between	WSDL/XML	schema	and	Java	is	an	important	function	associ-
ated with the wsimport tool.

Machine-readable contracts are also necessary for REST services. JAX-RS, if WADL is
not used, starts with a resource model to implement the resources in Java. Consider
the contract as a logical collection of the resource model, with the supported resource
methods, resource representations, and any hyperlinks embedded in the representa-
tions	allowing	navigability	between	resources.	If	WADL	is	used,	tools	like	wadl2java	
can	 generate	 code	 artifacts.	 Initiatives	 exist	 to	 help	 generate	WADL	 from	 annotated	
JAX-RS classes for a bottom-up approach, although these recent developments can have
limited usefulness.

Some SOA projects will employ both a bottom-up and a top-down approach to identify
and design services and service contracts, which often results in a meet-in-the-middle
approach. Service definitions and Java interfaces are tuned and adjusted until a good
match is found.

Sometimes an XML schema definition developed as part of the service design cannot
map	well	into	Java	code.	Conversely,	existing	Java	code	may	not	easily	map	into	an	XML	
schema. Java code that does not precisely map to a service interface designed as part of
a	top-down	approach	can	exist.	In	this	case,	the	Service	Façade	pattern	can	be	applied	
to insert a thin service wrapper to satisfy the service interface and adapt incoming and
outgoing	data	to	the	format	supported	by	the	existing	Java	code.

Mapping Between Java and WSDL

WSDL	is	the	dominant	method	of	expressing	the	contract	of	a	Java	component.	While	
typically related to Web services, the language can also be utilized for other types of
services. Formalization and standardization of the relationship between Java and WSDL
has made this possible, such as the work completed on the JAX-RPC standard.

The JAX-RPC standard initially defined basic tasks, such as “a service portType is
mapped	to	a	Java	interface”	and	“an	operation	is	mapped	to	a	method.”	However,	for-
malizing allows the definitions described in the JAX-RPC standard to define how an
existing	Java	component	(a	class	or	interface)	can	generate	a	WSDL	definition,	and	vice	
versa. Consequently, most contemporary Java IDEs support generating one from the
other without requiring any manual work.

7.2 Standardized Service Contract 17

JAX-WS, the successor standard for JAX-RPC, builds on top of its predecessor’s defini-
tions and delegates all the issues of mapping between Java and XML to the JAXB speci-
fication (as discussed in Chapter 6). These sections serve to highlight some of the issues
raised when creating standard service contracts from Java or creating Java skeletons
from	existing	service	contracts.	The	majority	of	the	details	explained	in	the	next	section	
apply specifically to Web services.

Wrapped Document/Literal Contracts

The WSDL standard identifies a variety of styles for transmitting information between
a service consumer and service. Most of the styles are specific for the chosen message
and network protocol, and specified in a section of the WSDL definition called the bind-
ing. A common binding found in a WSDL definition uses SOAP as the message protocol
and	HTTP	as	the	network	transport.	Assume	that	SOAP/HTTP	is	the	protocol	used	for	
the	services	presented	as	examples.

The portType is a binding-neutral part of a service definition in WSDL that describes
the messages that travel in and out of a service. Reusable across multiple protocols, the
portType is not bound to the use of a Web service. Any service, even if invoked locally,
can be described by a WSDL portType, which allows service interfaces to be defined in
a language-neutral fashion regardless of whether the service logic will be implemented
in Java or another language.

As	discussed	in	Chapter	5,	the	WSDL	binding	information	defines	the	message	format	
and protocol details for Web services. For SOAP-based bindings, two key attributes
known as the encoding style and the invocation style determine how messages are
encoded and how services are invoked.

The	wrapped	document/literal	style	supported	by	default	in	all	Java	environments	for	
services	 dictates	 that	 an	 exchange	 should	 be	 literal.	 Literal	means	 that	 no	 encoding	
happens in the message, so the payload of the message is a literal instantiation of the
schema descriptions in the <types> element of the WSDL. The invocation style is docu-
ment. Document means that the runtime environment should generate a direct copy of
the input and output messages as defined in the portType and not just an arbitrary part
of the message. Wrapped means that the payload of the message includes a wrapper
element with the same name as the operation invoked.

In	order	to	understand	how	the	WSDL	standard	relates	to	Java,	let’s	review	Example	7.11	
to	expose	the	following	class	as	a	service	and	create	a	standardized	contract.

18 Chapter 7: Service-Orientation Principles with Java Web-Based Services

package pack;
import javax.jws.*;
@WebService
public class Echo {
 public String echo(String msg) {
 return msg;
 }
}

Example 7.11

Using	the	wrapped	document/literal	style	implements	a	wrapper	element	called	"echo"
after the echo() method in the public class. Echo is included in the XML schema associ-
ated	with	this	service.	An	excerpt	in	the	resulting	schema	is	provided	in	Example	7.12.

...
 <xs:element name="echo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
...

Example 7.12

Wrapping a message in one additional element named after the operation is prevalent
and the default in any commonly used tool. Note that naming the global element after
the operation is common practice and not required by the specification.

Implicit and Explicit Headers

Transferring information as part of the <Header> portion of the SOAP message, to be
added to the WSDL definition, is another important part of the binding information
for	SOAP.	This	section	discusses	how	to	bind	the	information	with	explicit,	implicit,	or	
no headers.

Explicit Headers

Header data is part of the messages referenced in the portType of the service, which is
often	called	an	explicit	header.	The	header	definition	in	the	SOAP	binding	refers	to	a	
message part either included in the input message or the output message of an operation.

7.2 Standardized Service Contract 19

In	Example	7.13,	assume	an	Echo	service	takes	a	string as input and returns that string
as the response. A timestamp must also be added into the header of the SOAP request
message, indicating the time at which the request was sent.

<definitions targetNamespace="http://pack/" name="EchoService"
 xmlns:tns="http://pack/" xmlns:xs="http://www.w3.org/2001/
 XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <xs:schema targetNamespace="http://pack/">
 <xs:element name="echo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="echoResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="timestamp" type="xs:dateTime"/>
 </xs:schema>
 </types>
 <message name="echo">
 <part name="parameters" element="tns:echo"/>
 <part name="timestamp" element="tns:timestamp"/>
 </message>
 <message name="echoResponse">
 <part name="parameters" element="tns:echoResponse"/>
 </message>
 <portType name="Echo">
 <operation name="echo">
 <input message="tns:echo"/>
 <output message="tns:echoResponse"/>
 </operation>
 </portType>
 <binding name="EchoPortBinding" type="tns:Echo">
 <soap:binding transport="http://schemas.xmlsoap.org/ soap/http"
 style="document"/>
 <operation name="echo">
 <soap:operation soapAction=""/>
 <input>
 <soap:body parts="parameters" use="literal"/>

20 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 <soap:header message="tns:echo" part="timestamp"
 use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
...
</definitions>

Example 7.13
The Echo service WSDL definition with an explicit header contains a timestamp.

Example	7.13	contains	an	extract	of	the	respective	WSDL	definition	for	an	Echo	service	
that shows:

	 •	 an	additional	element	in	the	schema,	called	"timestamp" of type xs:dateTime

	 •	 an	additional	part	in	the	input	message	definition,	which	refers	to	the	
timestamp element

	 •	 an	additional	definition	for	the	header	in	the	SOAP	binding,	which	indicates	that	
the timestamp element should be carried in the SOAP header of the
request message

The	header	binding	shown	in	Example	7.14	refers	to	a	part	also	included	in	the	portType	
of the service, the input message, and the Java service interface generated by the JAX-WS
wsimport tool. Note that the import statements are left out.

@WebService(name = "Echo", targetNamespace = "http://pack/")
@SOAPBinding(parameterStyle = ParameterStyle.BARE)
public interface Echo {
 @WebMethod
 @WebResult(name = "echoResponse", targetNamespace = "http://pack/",
 partName = "parameters")
 public EchoResponse echo(
 @WebParam(name = "echo", targetNamespace = "http://pack/",
 partName = "parameters")
 Echo_Type parameters,
 @WebParam(name = "timestamp", targetNamespace = "http://pack/",
 header = true, partName = "timestamp")
 XMLGregorianCalendar timestamp);
}

Example 7.14

7.2 Standardized Service Contract 21

The	 service	 interface	 includes	 a	 parameter	 for	 the	 explicit	 header	 and	 indicates	 two	
parameters: one that contains the string wrapped into the Echo_Type class and another
that carries the timestamp element. Note that nothing in the interface indicates that the
timestamp will go into the SOAP header, as this information is only contained in the
WSDL definition.

Implicit Headers

Assume that the header data is not part of the portType but instead uses a message
part unused in any input or output message, known as an implicit header. The header
information is not included in the portType of the service or in the Java interface.
Example	7.15	shows	that	the	WSDL	for	the	Echo	service	has	been	changed	to	include	an	
explicit	header.

<definitions targetNamespace="http://pack/" name="EchoService"
 xmlns:tns="http://pack/" xmlns:xs="http://www.w3.org/2001/
 XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 ... (this part is as before) ...
 <message name="echo">
 <part name="parameters" element="tns:echo"/>
 </message>
 <message name="echoResponse">
 <part name="parameters" element="tns:echoResponse"/>
 </message>
 <message name="header">
 <part name="timestamp" element="tns:timestamp"/>
 </message>
 <portType name="Echo">
 <operation name="echo">
 <input message="tns:echo"/>
 <output message="tns:echoResponse"/>
 </operation>
 </portType>
 <binding name="EchoPortBinding" type="tns:Echo">
 <soap:binding transport="http://schemas.xmlsoap.org/ soap/http"
 style="document"/>
 <operation name="echo">
 <soap:operation soapAction=""/>
 <input>
 <soap:body parts="parameters" use="literal"/>
 <soap:header message="tns:header" part="timestamp"
 use="literal"/>
 </input>

22 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 ...
</definitions>

Example 7.15
A WSDL definition contains an implicit header for an Echo service.

The	WSDL	definition	presented	in	Example	7.15	is	not	that	much	different	from	Exam-
ple	7.13,	with	a	separate	message	defined	for	the	header.	The	separate	message	has	a	sig-
nificant	impact	on	the	Java	interface	seen	in	Example	7.16,	where	the	import	statements	
have been omitted again.

@WebService(name = "Echo", targetNamespace = "http://pack/")
public interface Echo {
 @WebMethod
 @WebResult(targetNamespace = "")
 @RequestWrapper(localName = "echo",
 targetNamespace = "http://pack/", className = "pack.Echo_Type")
 @ResponseWrapper(localName = "echoResponse",
 targetNamespace = "http://pack/", className = "pack.EchoResponse")
 public String echo(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0);
}

Example 7.16
The service interface does not include the implicit header.

The	interface	in	Example	7.16	takes	a	simple	string parameter, and does not refer to the
timestamp element or use the Echo_Type class to wrap the input message. The implicit
header	definition	requires	extra	work	on	the	service	implementer	by	the	service	client	
developer to ensure the appropriate header information is inserted into the message.
The	implicit	header	definition	cannot	simply	be	passed	to	the	service	proxy	as	a	param-
eter. In both cases, JAX-WS handlers can be leveraged to process the SOAP header, or
intermediaries inserted between service consumer and service can manage all header
information, such as part of an ESB.

The	header	portion	of	a	service	message	should	only	contain	contextual	information,	
omitting any business connotation. The implementations of the service consumer and

7.2 Standardized Service Contract 23

the service should only deal with business logic and not with infrastructure-level infor-
mation.	The	use	of	 implicit	headers	 is	common,	although	extra	code	 to	generate	and	
process the headers must be written.

No Headers

A final option is to put no header information in the WSDL definition, which can appear
to leave the contract incomplete but is actually preferable. Headers typically contain
information	independent	from	the	business	payload	being	exchanged	between	services.	
Recall	a	timestamp	that	had	been	inserted	into	the	SOAP	message	presented	in	Exam-
ples	7.13	and	7.15.	Inserting	a	timestamp	might	be	a	defined	company	policy	across	all	
services, and a common method for doing so can be established. Adding this detail to
each WSDL definition is not required and creates an unnecessary dependency between
the business-relevant service contract and technical cross-service policy.

Data Mapping with REST

XML schemas can be used to represent service data elements, with JAXB and JAX-WS
generating the mapped Java classes and Web service artifacts for SOAP-style Web ser-
vice implementations. For REST services, the JAX-RS service implementations are simi-
lar. When the convenience of code generation is needed, JAXB annotated POJOs can be
used as the service entities in JAX-RS resource classes. Behind the scenes, the JAX-RS
runtime will marshal the Java objects to the appropriate MIME-type representations for
the entities, such as application/xml. A customer object annotated with JAXB annota-
tions	is	shown	in	Example	7.17.

@XmlRootElement(name="customer")
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
 private int id;
 private String name;

 public Customer() {}
 //...other attributes omitted
 //...getters and setters for id and name
 //...
}

Example 7.17

24 Chapter 7: Service-Orientation Principles with Java Web-Based Services

The resource methods in the JAX-RS implementation that produce or consume cus-
tomer	information	in	the	form	of	XML	can	be	seen	in	Example	7.18.

//...retrieve customer and return xml representation
@Get
@Path("id")
@Produces("application/xml")
public Customer getCustomer(
 @PathParam("id") Long id){
 Customer cust = findCustomer(id);
 return cust;
}
//...create customer with an xml input
@POST
@Consumes("application/xml")
public void createCustomer(
 Customer cust){
 //...create customer in the system
 Customer customer = createCustomer(cust);
 //...
}

Example 7.18

The JAX-RS implementation automatically handles the marshaling and unmarshaling
of the XML-based resource representation to and from JAXB objects. Generic types,
such as a javax.xml.transform.Source, can be handled in the resource class to keep
the resource class independent of any specific types defined in the domain, such as a
customer	 type.	However,	extra	work	 is	required	to	handle	 the	extraction	of	 the	cus-
tomer information from the Source	object	seen	in	Example	7.19.

@PUT
@Path("id")
@Consumes("application/xml")
public void updateCustomer(@PathParam("id") Long id,
 javax.xml.transform.Source cust) {
 // do all the hard work to
 // extract customer info in
 // extractCustomer()
 updateCustomer(id, extractCustomer(cust));
}

Example 7.19

7.2 Standardized Service Contract 25

JAX-RS supports alternate MIME types, such as JSON. Just as JAXB handles the bind-
ing	of	XML	to	and	from	Java	objects,	numerous	frameworks	exist	that	handle	mapping	
JSON representations to Java objects and vice versa. Some commonly used frameworks
for mapping between JSON and Java are MOXy, Jackson, and Jettison.

In	the	Jersey	implementation	of	JAX-RS	2.0,	the	default	mechanism	for	binding	JSON	
data to Java objects leverages the MOXy framework. When the Jersey runtime is con-
figured to use MOXy, the runtime will automatically perform binding between Java
objects (POJOs or JAXB-based) and a JSON representation. Jackson or Jettison can also
perform similar binding with appropriate runtime configuration. A low-level JSON
parsing approach can be achieved with the newly introduced JSON-P API (Java API for
JSON Processing) in Java EE 7. JSON-P should not be confused with JSONP (JSON with
Padding), which is a JavaScript communication technique used to avoid certain types
of browser restrictions.

Conversion Between JSON and POJOs

Given	the	same	customer	representation	as	illustrated	in	Example	7.20,	no	special	code	is	
required to handle an incoming JSON document or return a JSON-based representation.

//...
@GET
@Path("id")
@Produces("application/json")
public Customer getCustomer(
@PathParam("id") Long id){
 return findCustomer(id);
}

Example 7.20

The returned customer representation would be a JSON string, such as {"name":"John
Doe","id":"1234" ... }.

The same JAXB objects can be used for handling JSON media types that would nor-
mally be used for XML representation. The addition of another MIME type in the
@Produces	can	be	seen	in	Example	7.21.

@GET
@Path("id")
@Produces("application/json", "application/xml")

26 Chapter 7: Service-Orientation Principles with Java Web-Based Services

public Customer getCustomer(
//...

Example 7.21

The JAX-RS runtime returns an appropriate representation (XML or JSON) that is deter-
mined by the client’s preference. In spite of the convenience offered by JSON binding
frameworks like MOXy or Jackson, greater control over the processing of the JSON input
and output can be a requirement, as opposed to letting the JAX-RS runtime perform an
automatic binding between JSON and Java objects.

For	example,	REST	service	operations	must	consume	or	produce	only	selective	parts	
of large JSON documents, as converting the whole JSON document to a complete Java
object graph can cause significant resource overheads. In such cases, a JSON parsing
mechanism based on a streaming approach can be more suitable. JSON-P APIs allow a
developer complete control over how JSON documents are processed. JSON-P supports
two programming models, the JSON-P object model and the JSON-P streaming model.

The JSON-P object model creates a tree of Java objects representing a JSON docu-
ment. The JsonObject class offers methods to add objects, arrays, and other primitive
attributes to build a JSON document, while a JsonValue class allows attributes to be
extracted	from	the	Java	object	representing	the	JSON	document.	Despite	the	advantage	
of convenience, processing large documents with the object model can create substan-
tial memory overheads, as maintaining a large tree of Java objects imposes significant
demands on the Java heap memory. This API is similar to the Java DOM API for XML
parsing (javax.xml.parsers.DocumentBuilder).

In comparison, the JSON-P streaming model uses an event parser that reads or writes
JSON data one element at a time. The JsonParser can read a JSON document as a
stream containing a sequence of events, offer hooks for intercepting events, and per-
form appropriate actions. The streaming model helps avoid reading the entire docu-
ment into memory and offers substantial performance benefits. The API is similar to the
StAX Iterator APIs for processing XML documents in a streaming fashion (javax.xml.
stream.XMLEventReader). The JsonGenerator class is used to write JSON documents
in a streaming fashion similar to javax.xml.stream.XMLEventWriter in StAX API.

JSON-P does not offer binding between JSON and Java. Frameworks, such as MOXy or
Jackson, are similar to JAXB in how they will need to be leveraged to perform conver-
sion between Java objects and JSON.

7.2 Standardized Service Contract 27

CASE STUDY EXAMPLE

SmartCredit	launches	an	aggressive	expansion	campaign	with	the	intention	of	offer-
ing premium credit cards with cashback offers to high-value customer prospects
across a retail chain’s locations. After signing an agreement with the retail chain,
SmartCredit obtains prospect data from all the retail stores containing prospect
names, e-mail addresses, and net transaction values at the end of every month. An
internal Prospect Analyzer application will process the data to target prospects with
high monthly transaction values and send out e-mails with new premium credit
card offers.

The retail chain’s IT department sends customer data to SmartCredit in large JSON
documents containing prospect information. However, the SmartCredit Prospect
Analyzer	service	 is	only	 interested	 in	prospects	 that	 spend	 in	excess	of	2,000	dol-
lars	during	the	month.	A	fragment	of	a	typical	monthly	JSON	extract	from	the	retail	
stores	is	provided	in	Example	7.22.

"txnsummary":{
"date":"2014-01-31T23:30:00-0800",
"store":"Fashion Trends #132",
"txn": [
 {
 "type":"cash",
 "amount":235.50,
 "e-mail":null
 },
 {
 "type":"credit",
 "amount":3565.00,
 "e-mail":"jane@doe.com"
 }
]}

Example 7.22

SmartCredit IT accepts the prospect and transaction data through an HTTP POST
from the retail stores at the end of every month. A REST API that consumes this
JSON	data	and	extracts	the	prospects	for	marketing	campaigns	is	built.	After	review-
ing the size of the monthly feed, a SmartCredit architect quickly realizes that mem-
ory limitations will prevent a typical JSON-Java binding approach from working for

28 Chapter 7: Service-Orientation Principles with Java Web-Based Services

such large payloads. In addition, SmartCredit is only interested in processing selec-
tive parts of the payload, such as credit card transactions with amounts greater than
2,000	dollars.	

Converting the entire JSON data into Java objects is a waste of time, memory, and
resources. The JSON-P streaming API is a suitable option for allowing selective pro-
cessing of only the data sections meeting the given criteria. A simplified version of
the	final	resource	class	is	illustrated	in	Example	7.23.

import javax.ws.rs.Consumes;
import javax.ws.rs.Path;
import javax.ws.rs.POST;
import javax.ws.rs.core.MediaType;
import java.io.Reader;
import javax.json.Json;
import javax.json.streaming.JsonParser;
import javax.json.streaming.JsonParser.Event
@Path("upload")
@Consumes(MediaType.APPLICATION_JSON)
public class ProspectFilteringResource {
 private final double THRESHOLD = 2000.00;
 @POST
 public void filter(final Reader transactions) {
 JsonParser parser = Json.createParser(transactions);
 Event event = null;
 while(parser.hasNext()) {
 event = parser.next();
 if(event == Event.KEY_NAME&&"type".equals(parser.getString()))
 {
 event = parser.next(); //advance to Event.VALUE_STRING for
 the actual value of "type"
 if("credit".equals(parser.getString()) {
 parser.next(); //Event.KEY_NAME for "amount"
 event = parser.next(); //Event.VALUE_NUMBER for amount
 value
 if(parser.getBigDecimal().doubleValue() > THRESHOLD) {
 parser.next(); //advance to Event.KEY_NAME for "e-mail"
 parser.next(); //advance to Event.VALUE_STRING for
 e-mail info
 String e-mail = parser.getString();
 addToCampaignList(e-mail);
 }
 }
 }

7.2 Standardized Service Contract 29

 }
 }
 private void addToCampaignList(String e-mail) {
 // actual logic of adding e-mail to campaign list
 }
}
Example 7.23
The JSON-P streaming API can parse a large JSON document selectively.

The code uses the streaming API to advance the parser to consume only specific
events and avoids reading the entire JSON data structure into memory, which would
have been the case using the standard JSON-Java binding approach. One drawback
to the JSON-P approach is the cumbersome maneuvering of the event stream in the
application code, although such trade-offs are often necessary in real-world usage.

Binary Data in Web Services

Candidates looking to utilize a service-oriented solution often require the transfer of
large amounts of data kept in some binary format, such as a JPEG image file. The Java
language offers support for handling binary data in its JavaBeans Activation Frame-
work (JAF) as well as classes and interfaces in other packages, which depend on the
format.	For	example,	the	java.awt.Image class hierarchy supports image formats, such
as JPEG. The JAXB specification defines how to map certain Java types to XML schema,
such as the mapping of a java.awt.Image type to base64Binary.

Binary formats without a special Java type associated can use the javax.activation.
DataHandler class defined in JAF. However, byte[] is the most generic way of repre-
senting binary data in Java. JAXB defines that a byte[] is mapped to base64Binary
and hexBinary.

When generating a WSDL contract from a Java interface, binary data types are mapped
using JAXB mapping rules. Generating the reverse is not as straightforward. An XML
schema element of type base64Binary can map into multiple different Java types. By
default, byte[] is used. Indicating that an element declared as base64Binary in the
schema should be mapped to java.awt.Image in the Java service implementation can
be performed in a number of ways. Binary data can be transferred in a SOAP message
or	inline,	which	means	binary	data	is	encoded	into	text	and	sent	like	any	other	data	in	
the message.

30 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Transferring the data inline maintains interoperability between different vendor envi-
ronments, but is ineffective when dealing with large pieces of binary data, such as a
CAD	drawing	of	an	airplane.	The	text	encoding	increases	the	size	of	the	message	by	
an	average	of	25%.	The	MTOM	is	an	alternative	to	text	encoding,	which	describes	how	
parts of a message can be transferred in separate parts of a MIME-encoded multipart
message. The binary content is removed from the SOAP payload, given a MIME type,
and transferred separately.

JAXB	provides	support	 for	MTOM,	which	must	be	explicitly	enabled	for	 the	JAX-WS	
runtime. JAX-WS plugs into this support when building and parsing messages with
attachments. An element definition can be annotated in an XML schema document with
two specific attributes indicating which MIME type to give the element. When using
MTOM, the contentType and expectedContentTypes attributes demonstrate how to
MIME-encode the element and determine which Java type the element is mapped to in
the Java service interface.

Nothing in the schema or in any of the Java code indicates whether the binary data is
transferred as an attachment using MTOM or inserted directly into the SOAP envelope.
In JAX-WS, distinguishing the difference is defined either by a setting on the service
configuration	file	or	programmatically.	The	following	case	study	example	illustrates	a	
SOAP-based Web service managing attachments via MTOM.

CASE STUDY EXAMPLE

NovoBank offers a remote method of opening an account from its Web site for cus-
tomers	to	download	a	form,	fill	it	out,	and	mail	or	fax	it	to	a	branch	office.	Alterna-
tively, customers can fill out the form in branch and provide the completed form to a
bank employee. The forms are scanned in at the branch office for further processing
by NovoBank’s back-end system before being archived.

To reduce processing time, the bank wants to offer customers and employees a Web
application that accepts an uploaded binary image of the form to send to the bank.
Internally, the Open Account service uses a Web service that takes the binary image
as a parameter. To simplify the implementation of the associated service logic in Java,
the service contract uses the expectedContentType attribute in its schema to indi-
cate that the scanned image is formatted as a JPEG document. The resulting WSDL
definition	 is	 shown	 in	 Example	 7.24	 with	 parts	 of	 the	WSDL	 document	 omitted	
for brevity.

7.2 Standardized Service Contract 31

<definitions targetNamespace= "http://personalbanking.services.
 novobank.com/" name="AccountService"
 xmlns:tns="http://personal banking.services.novobank.com/"
 xmlns:xsd="http://www.w3.org/ 2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns=http://schemas.xmlsoap.org/wsdl/
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <types>
 <xsd:schema>
 <xs:element name="openAccount" type="ns1:openAccount"
 xmlns:ns1="http://personalbanking.services.novobank.com/"/>
 <xsd:complexType name="openAccount">
 <xsd:sequence>
 <xsd:element name="arg0" type="xsd:base64Binary"
 xmime:expectedContetTypes="image/jpeg" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 ...
 </xsd:schema>
 </types>
 <message name="openAccount">
 <part name="parameters" element="tns:openAccount"/>
 </message>
 <message name="openAccountResponse">
 <part name="parameters" element="tns:openAccountResponse"/>
 </message>
 <portType name="Account">
 <operation name="openAccount">
 <input message="tns:openAccount"/>
 <output message="tns:openAccountResponse"/>
 </operation>
 </portType>
</definitions>

Example 7.24
The WSDL for NovoBank’s Open Account service with an MTOM content type definition will now accept the JPEG format.

An element of type base64Binary will be mapped to a byte[] in the Java inter-
face. However, the additional annotation of the parameter element, using the
expectedContentTypes attribute, leads to the following Java interface presented in
Example	7.25.

32 Chapter 7: Service-Orientation Principles with Java Web-Based Services

package com.novobank.services.personalbanking;
import java.awt.Image;
// other imports omitted
@WebService(name = "Account", targetNamespace = "http://
 personalbanking.services.novobank.com/")
public interface Account {

 @WebMethod
 @WebResult(targetNamespace = "")
 @RequestWrapper(localName = "openAccount",
 targetNamespace = "http://personalbanking.services.novobank.
 com/", className = "com.novobank.services.personalbanking.
 OpenAccount")
 @ResponseWrapper(localName = "openAccountResponse",
 targetNamespace = "http://personalbanking.services.novobank.
 com/", className = "com.novobank.services.personal banking.
 OpenAccountResponse")
 public String openAccount(
 @WebParam(name = "arg0", targetNamespace = "")
 Image arg0);
}

Example 7.25
The content type is mapped to the appropriate Java type in the service interface.

Note how the parameter passed to the service implementation is mapped to the
java.awt.Image type. Defining whether MTOM is used to transfer the form image
as an attachment can be performed programmatically using JAX-WS, or in the client
or the endpoint configuration for the service endpoint. A sample client for the new
Open	Account	service	is	shown	in	Example	7.26.	

package com.novobank.services.personalbanking.client;
import java.awt.Image;
import java.awt.Toolkit;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.soap.SOAPBinding;

public class AccountServiceClient {
 public static void main(String[] args) {
 Image image = Toolkit.getDefaultToolkit().getImage("c:\\temp\\
 java.jpg");
 Account serviceProxy = new AccountService(). getAccountPort();
 SOAPBinding binding = (SOAPBinding)((BindingProvider)
 serviceProxy).getBinding();

7.2 Standardized Service Contract 33

 binding.setMTOMEnabled(true);
 String accountNumber = serviceProxy.openAccount(image);
 System.out.println("returned account number is
 "+accountNumber);
 }
}

Example 7.26
A Java client enables MTOM transport.

After	deploying	the	service	and	running	the	 test	client	 listed	 in	Example	7.26,	 the	
SOAP	message	sent	can	be	reviewed	by	executing	the	client	in	Example	7.27.

POST /attachment/account HTTP/1.1
Content-Length: 13897
SOAPAction: ""
Content-Type: Multipart/Related; type="application/xop+xml";
boundary="----=_Part_0_14949315.1177991007796"; start-info="text/
xml"
Accept: text/xml, application/xop+xml, text/html, image/gif, image/
jpeg, *; q=.2, */*; q=.2
User-Agent: Java/1.5.0_11
Host: 127.0.0.1:8081
Connection: keep-alive

------=_Part_0_14949315.1177991007796
Content-Type: application/xop+xml; type="text/xml"; charset=utf-8

<?xml version="1.0" ?><soapenv:Envelope xmlns:soapenv=http://
schemas.xmlsoap.org/soap/envelope/ xmlns:xsd=http://www.w3.org/2001/
XMLSchema xmlns:ns1="http://personalbanking.services.novobank.
com/">/"><soapenv:Body><ns1:openAccount><arg0><xop:Include
xmlns:xop="http://www.w3.org/2004/08/xop/include" href="cid:f17b4f2b-
db2c-4bc5-96d1-2d4857aaa5b8@example.jaxws.sun.com"></xop:Include></
arg0></ns1:openAccount></soapenv:Body></soapenv:Envelope>

------=_Part_0_14949315.1177991007796
Content-Type: application/octet-stream
Content-ID: <f17b4f2b-db2c-4bc5-96d1-2d4857aaa5b8@example.jaxws.sun.
com>
Content-transfer-encoding: binary_KýÝ_ÔF-¡úÞr*îÉu1_)Š1áñ}K²£•Ñ\
êKQZ_Ý4Ï¡É)*G’~ªohBïýfÙÈï¦zùì£_Ö(Ö &_Èõmâoå¨\Ó\(ò¹åq€ºÊ _W¶èÁh";_
ÐÚ´z0"ç5WÃ"_üv|DÜî7IÚù_é6³ÈÚ1•lëÉäl›BîöWÈ"ý|›i"ì™Åã]ÓÉÝ9ƒ_"7Üý¶j9{
ßáÉ?w(_"86‹ü£Ã_´?_:Ž§òÔŠvM¦éÈë4_ŸÊ"=ƒÑ]™EýÕ×Ès˜Hýå÷©?7‹â""¨r{‹â³¯

34 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Rè<...R×©Ô]z_íµÙ4_ÿBîùš_?ÿPé3ê
... the rest of the data omitted ...
------=_Part_0_14949315.1177991007796--

Example 7.27
A SOAP message with an MTOM-compliant binary part

The request message is divided into the SOAP message, including reference to the
binary data, and the binary data sent as an attachment. The message can be handled
more efficiently and does not impact the processing of the remaining XML informa-
tion. Again, whether the data is sent as an attachment or not is not defined in the
service contract (the WSDL definition).

Binary Data in REST Services

JAX-RS supports the conversion of resource representations into Java types, such as
byte[] or java.io.InputStream, in resource methods. To produce or consume
binary data from resource methods, JAX-RS runtime handles the conversion through
a number of built-in content handlers that map MIME-type representations to byte[],
java.io.InputStream, and java.io.File. If binary content must be handled as a raw
stream of bytes in a resource method, the corresponding resource method is seen in
Example	7.28.

@Get
@Produces("image/jpg")
public byte[] getPhoto() {
 java.io.Image img = getImage();
 return new java.io.File(img);
}

@Post
@Consumes("application/octet-stream")
public void processFile(byte[] bytes) {
 //...process raw bytes
}

Example 7.28

7.2 Standardized Service Contract 35

The java.io.File type can help process large binary content in a resource method,
such	as	an	attachment	containing	medical	images,	as	seen	in	Example	7.29.

@POST
@Consumes("image/*")
public void processImage(File file) {
 //...process image file
}

Example 7.29

The JAX-RS runtime streams the contents to a temporary file on the disk to avoid stor-
ing the entire content in memory. For complete control over content handling, JAX-RS
offers	 several	 low-level	utilities	which	 can	be	useful	 for	 custom	marshaling/unmar-
shaling of various content types. The javax.ws.rs.ext.MessageBodyReader and
javax.ws.rs.ext.MessageBodyWriter interfaces can be implemented by developers
to convert streams to Java types and vice versa.

Back-and-forth conversion is useful when mapping custom MIME types to the domain-
specific Java types. The classes that handle the mapping are annotated with the
@Provider annotation and generically referred to as JAX-RS entity providers. Entity
providers are used by the JAX-RS runtime to perform custom mapping.

A special case of javax.ws.rs.ext.MessageBodyWriter is the javax.ws.rs.

core.StreamingOutput callback interface, which is a wrapper around a
java.io.OutputStream. JAX-RS does not allow direct writes to an OutputStream.
The	callback	interface	exposes	a	write method allowing developers to customize the
streaming	of	the	response	entity.	Example	7.30	demonstrates	the	gzip format used to
compress a response entity.

import javax.ws.rs.core.StreamingOutput;
...
@GET
@Produces("application/gzip-compressed")
public StreamingOutput getCompressedEntity() {

NOTE

Indicate the MIME type through an appropriate @Produces annotation,
such as a JPG image, so that the runtime can set the right content-type
for the returned resource representation.

36 Chapter 7: Service-Orientation Principles with Java Web-Based Services

return new StreamingOutput() {
 public void write(OutputStream out)
 throws IOException, WebApplicationException {
 try {
 ...
 GZipOutputStream gz =
 new GZipOutputStream(out);
 //...get array of bytes
 // to write to zipped stream
 byte[] buf = getBytes();
 gz.write(buf, 0, buf.length);
 gz.finish();
 gz.close();
 ...
 } catch(Exception e) { ... }
 }
 };
}

Example 7.30

For	mixed	 content	 containing	both	 text	 and	binary	payload,	 entity	providers	 can	be	
used to perform custom marshaling, while multipart MIME representations are suit-
able	for	dealing	with	mixed	payloads.	JAX-RS	standards	do	not	mandate	support	for	
handling	mixed	MIME	multipart	content	types	apart	from	multipart	FORM	data	(mul-
tipart/form-data),	which	is	useful	for	HTML	FORM	posts	but	has	limited	use	in	a	sys-
tem-to-system	interaction	context.	Various	JAX-RS	implementations,	such	as	Jersey	and	
RESTEasy,	 provide	 support	 for	mixed	multipart	 data.	Handling	mixed	 content	with	
binary	data	is	common,	as	seen	in	the	following	case	study	example	for	SmartCredit’s	
Submit Credit Application service.

CASE STUDY EXAMPLE

SmartCredit is building a REST service known as the Submit Credit Application ser-
vice that is intended for service consumers to submit credit card applications. Apart
from basic information such as customer details, the supporting information in the
form of various collaterals, such as mortgage papers and loan approvals, must be
scanned as images and attached to the application.

The	 SmartCredit	 application	 development	 team	 considered	 using	 Base64	 encod-
ing, but moved onto other alternatives after realizing a substantial size bloat would

7.2 Standardized Service Contract 37

result.	The	development	team	decides	on	the	mixed	multipart	representation	for	the	
application data. The multipart application data will have the customer information
in an XML format as the first part, and a series of images in the subsequent parts.

A	sample	multipart	application	request	over	HTTP	is	shown	in	Example	7.31.

POST /creditapps/ HTTP/1.1
Host: smartcredit.com
Content-Type: multipart/mixed; boundary=xyzw

--xyzw
Content-Id: <abcdefgh-1>
Content-Type: application/xml
<customer>
 <name>John Doe</name>
 <Address>...</Address>
 ...

--xyzw
Content-Id: <abcdefgh-2>
Content-Type: image/jpg
...
&_Èõmâoå¨\Ó\(ò¹åq ºÊ _W¶èÁh";_ÐÚ´z0"ç5WÃ"_üv|DÜî7IÚù_
é6³ÈÚ1•lëÉäl›BîöWÈ"ý|›i"ì™Åã]ÓÉÝ9ƒ_"7Üý¶j9{ßáÉ?w(_"86‹ü£Ã_´?_:Ž§òÔŠv
M¦éÈë4_ŸÊ"=ƒÑ]™EýÕ×Ès˜Hý...rest of the binary data goes here
--xyzw—

Example 7.31

The SmartCredit service development team considered using a custom JAX-RS Entity
Provider	 to	 handle	 the	 mixed	 multipart	 data,	 but	 realized	 the	 reference	 JAX-RS	
implementation	Jersey	already	provides	support	for	mixed	multipart	data	through	
an add-on called jersey-media-multipart. The key classes leveraged in this imple-
mentation include:

	 •	 The	org.glassfish.jersey.media.multipart.BodyPartEntity represents the
entity of a part when a MIME Multipart entity is received and parsed.

	 •	 The	org.glassfish.jersey.media.multipart.BodyPart is a mutable model
representing a body part nested inside a MIME Multipart entity.

The resource class method that handles the submitted application can be seen in
Example	7.32.

38 Chapter 7: Service-Orientation Principles with Java Web-Based Services

import org.glassfish.jersey.media.multipart.MultiPart;
import org.glassfish.jersey.media.multipart.BodyPart;
import org.glassfish.jersey.media.multipart.BodyPartEntity;
import javax.ws.rs.core.Response;
...

import com.smartcredit.domain.Customer;
...

@Path("/creditapps")
public class CreditAppResource {

 @POST
 @Consumes("multipart/mixed")
 public Response post(MultiPart multiPart) {
 // First part contains a Customer object
 Customer customer =
 multiPart.getBodyParts().get(0).
 getEntityAs(Customer.class);

 // process customer information
 processCustomer(customer);

 // get the second part which is a scanned image
 BodyPartEntity bpe =
 (BodyPartEntity) multiPart.getBodyParts().
 get(1).getEntity();
 try {
 InputStream source = bpe.getInputStream();
 //process scanned image
 }

 // Similarly, process other images in the multipart
 // content, if any...

 //If everything was fine, return Response 200
 return Response.status(Response.Status.OK).build();

 //else if there were errors...
 return Response.status(Response.Status.BAD_REQUEST).
 build();
}

Example 7.32

7.2 Standardized Service Contract 39

In the code fragment, the @Consumes annotation indicates that a resource representa-
tion	of	multipart/mixed	is	expected.	In	this	case,	the	payload	contains	customer	data	
in XML and one or more scanned images. The following Jersey utilities perform dif-
ferent	steps	in	managing	the	mixed	multipart	data:

	 •	 com.sun.jersey.multipart.MultiPart.getBodyParts() returns a list of com.
sun.jersey.multipart.BodyParts.

	 •	 BodyPart.getEntityAs(Class<T> cls) returns the entity converted to the
passed-in class type.

	 •	 com.smartcredit.domain.Customer is a regular JAXB-annotated Java class.
Since the first entity in the multipart message is known to be the customer entity,
the BodyPart.getEntityAs(Customer.class) method is used to unmarshal
the XML entity body into a JAXB customer object.

	 •	 BodyPart.getEntity() returns the entity object to be unmarshaled from
a request. The entity object is known to be a BodyPartEntity and is
cast accordingly.

	 •	 BodyPartEntity.getInputStream() returns the raw contents, which in this
case are the contents of the scanned image.

Note that by using the MIME multipart utilities in Jersey, the development team is
able to avoid writing much of the plumbing code that would otherwise be necessary
to deal with multipart MIME messages.

Use of Industry Standards

The use of industry standards in developing service contracts builds on the IT-specific
standards and seldom offers challenges when using Java as the language and runtime
environment. Many industries have established data formats that ensure interoperabil-
ity between business partners, suppliers, and between systems within an enterprise,
such as the ACORD standard for insurance, HL7 for the healthcare industry, or SWIFT
for banking.

Used	 primarily	 to	 exchange	 information	 between	 companies	 or	 independent	 units	
within an enterprise, industry standards are prime candidates for use as part of the ser-
vice	contract.	Industry	standards	are	generally	expressed	as	XML	schema	definitions,	

40 Chapter 7: Service-Orientation Principles with Java Web-Based Services

which can be directly referenced in a service contract or serve as the basis for a
specific schema.

Before	the	advent	of	JAXB	2.0	which	supports	the	full	set	of	XML	schema	constructs,	a	
common issue was the inability to map all of the elements used in an industry schema
into	Java	because	such	mapping	was	not	defined.	JAXB	2.x	nearly	resolves	this	issue,	
but	cases	still	occur	where	a	large	and	complex	industry	standard	schema	cannot	be	
handled by a data binding tool like JAXB. Using an industry standard unchanged in a
service contract can be tedious and lead to the generation of hundreds of Java classes
mapping	all	of	the	complex	types	defined	in	the	schema.

SUMMARY OF KEY POINTS

• SOAP-based Web services can be developed top-down, bottom-up, or
meet-in-the-middle.

• For REST services, a resource implementation artifact is used to model a
Web resource that responds to HTTP operations. Apart from XML, support
for resource representations can encompass a wide range of other media
types. REST services can also use MIME features, such as multipart mes-
sages, to deal with binary content. JAX-RS implementations provide content
handlers which can be customized for dealing with
different representations.

• Standards-based service contracts can map the relevant XML schema con-
structs to and from Java. For both SOAP and REST services, the JAXB 2.0
standard offers support for the entire set of XML schema features. Industry
standards are widely used in service contracts and do not introduce particu-
lar challenges when using Java.

• For SOAP-based Web services, special considerations apply when leverag-
ing specific WSDL features, such as header fields, attachments with binary
data, or the use of wrapper elements.

7.3 Service Loose Coupling

In a service-oriented environment, components can be coupled at a number of different
levels. Coupling can occur at the level of the service contract, the service implementa-
tion logic, or the underlying technology platform the service is running on if a service

7.3 Service Loose Coupling 41

consumer is coupled with a particular service. In general, SOA promotes the notion of
decoupled systems by which the parts of a service-oriented solution are as decoupled
as possible. Reducing the dependency of one part on another allows one area, such as
a service or an aggregation, to be changed without requiring changes to other areas.

The following design characteristics are helpful in the creation of decoupled systems:

	 •	 separation	of	contract	and	implementation

	 •	 functional	service	context	with	no	dependency	on	outside	logic

	 •	 minimal	requirements	for	the	service	consumer

When	service	logic	is	implemented	in	Java	and	executed	in	a	JRE,	a	coupling	is	created	
between the logic and the underlying technology platform, Java. Additional dependen-
cies	arise	when	Java	EE	is	used	as	the	hosting	platform.	For	an	in-depth	explanation	
of the variations of positive and negative coupling, see Chapter 7 in SOA Principles of
Service Design.

Separation of Contract and Implementation

The separation of a service contract from its implementation is a key characteristic of
service-oriented design that was first established as part of the definition of remote
procedure calls and then in object-oriented programming. The interface of a component
is	exposed	to	a	point	that	allows	other	logic	to	invoke	this	component,	but	no	details	
about the implementation are added. Changes to the implementation can then be made
without affecting the client. SOA took this concept further by establishing the notion
of	a	standards-based	contract.	For	example,	the	service	interface	can	be	expressed	in	a	
programming language-neutral way to allow for the integration of logic written in dif-
ferent languages and running on different platforms.

The	choice	of	programming	 language	 can	be	exposed	 in	 the	 service	 contract.	 In	 the	
context	of	a	SOAP	Web	service	 from	the	Top-Down vs. Bottom-Up section, a common
approach	 is	 to	generate	 the	 service	 contract	 from	existing	 Java	 logic.	 In	 JAX-WS,	 the	
wsgen tool can be used to generate a complete WSDL document, including the XML
schema	definition	from	an	existing	JavaBean	or	 Java	 interface.	However,	 the	existing	
Java code may not be easily mapped into XML schema.

For	 example,	 assume	 that	 the	 public java.util.Hashtable<String, String>

getTable(int i); method is part of an interface to be turned into a service. Using the
wsgen tool to generate both the WSDL and XML schema definition from this interface
creates	the	type	definitions	presented	in	Example	7.33.

42 Chapter 7: Service-Orientation Principles with Java Web-Based Services

<xs:element name="getTableResponse" type="ns2:getTableResponse"
 xmlns:ns2="http://the.package/"/>
<xs:complexType name="getTableResponse">
 <xs:sequence>
 <xs:element name="return" type="ns3:hashtable" minOccurs="0"
 xmlns:ns3="http://the.package/"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="hashtable">
 <xs:complexContent>
 <xs:extension base="ns4:dictionary"
 xmlns:ns4= "http://the.package/">
 <xs:sequence/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="dictionary" abstract="true"/>

Example 7.33

The result is a valid XML schema definition, although a Java Hashtable	is	exposed	in	
the service interface which renders the schema not useful or usable outside of Java. The
same is true for many other classes and interfaces in Java, which, while useful as part
of the implementation, do not map well into XML schema and non-Java environments.
Many of the more technically-oriented classes, including the members of the java.io
package, fall into this category.

The use of internal, platform-specific information carried in a generic type is another
aspect	of	decoupling	the	contract	and	implementation.	For	example,	the	name	of	a	file	
usually stored as a string can be mapped into XML schema and added to a service con-
tract.	However,	exposing	file	names	on	a	service	contract	is	considered	poor	practice,	
and revealing details of the service implementation to the service consumer should be
avoided. The same holds true for names of databases, database tables, machine names,
and addresses.

Using the reverse approach is another way of creating this coupling, particularly when
generating a service logic skeleton directly from a service contract. In JAX-WS, the
wsimport tool is used to create Java code skeletons representing a given WSDL defini-
tion. Despite being the recommended approach, be aware that the generated Java code
is now tightly coupled to its contract, which prevents the code from being easily reused
to serve other types of service contracts or updated versions of the current contract. In
most cases, the tight coupling is acceptable because the logic is created for a particular
contract and nothing else.

7.3 Service Loose Coupling 43

However, instances occur where service logic must be created for reuse despite changes
to the underlying contract changes or the need to concurrently serve multiple versions
of the same contract. The JAX-WS Provider API is equipped for such instances. In this
model, the service logic parses the incoming message at runtime for dynamic process-
ing with no direct dependency on the types and elements defined in the WSDL contract.
Use of the JAX-WS Provider	API	is	detailed	in	Chapter	8.

For a REST service, coupling the code to the service contract is inconsequential because
generating implementation artifacts from a machine-readable contract, unless WADL is
being used, is uncommon. Implementing a Web resource for a platform, such as JAX-
RS,	out	of	 the	box	supports	only	a	finite	 subset	of	 Java	classes	 that	can	be	automati-
cally mapped to appropriate content-types. For custom types not mapped automatically
by the built-in content handlers, developers must provide implementations of javax.
ws.rs.core.MessageBodyReader/MessageBodyWriter interfaces to map such types
to a known set of resource representations or media types.

Independent Functional Contexts

Besides the direct compile-time of coupling services, consider the coupling of a ser-
vice	to	its	outside	functional	context.	Service	invocations	happen	as	part	of	a	business	
transaction	or	process	to	establish	a	context	that	effectively	binds	the	services,	which	
are invoked downstream, into an aggregated set. Having a set of services as part of the
same process establishes a type of coupling between the services, a coupling that should
always be top-down. Particularly when leveraging other services to fulfill functionality,
a service implementation can be coupled with or have dependency on those services.
However, the service should not have a dependency on any services at a higher level
of the process hierarchy, or be coupled with the invoking service or with peer services.

For	 example,	 assume	 that	 a	 service	 offers	Credit	Check	 functionality.	 The	 service	 is	
implemented as a business process that invokes a number of other finer-grained ser-
vices, such as Credit Lookup, Credit Eligibility, Update Profile, and Notification. All
four downstream services are peers within the Credit Check business process. Service
peers should have no dependency on each other, or be aware of or coupled with their
upstream Credit Check service.

Services representing business processes, such as Credit Check and Maintain Customer
Information, are decomposed into a set of fine-grained services to create a downstream
dependency. A service should not introduce a dependency on another service that is
higher	level.	For	example,	the	implementation	of	the	Update	Profile	entity	service	should	
not introduce any dependency on the Maintain Customer Information task service.

44 Chapter 7: Service-Orientation Principles with Java Web-Based Services

In Java, the same principles of downstream dependency hold true. Unwanted depen-
dencies	can	be	detected	by	examining	the	classes	that	are	used	by	a	piece	of	Java	logic.	
Organizing	classes	into	packages	directly	identifying	the	service	and/or	affiliated	busi-
ness process and ensuring that logically decoupled functions are not packaged together
is recommended. A package name should be selected with consideration for possible
reuse opportunities. For Web services, the same requirements for namespaces are used
in the service contract.

Service Consumer Coupling

For SOAP-based Web services, a service consumer will often be tightly coupled with the
service contract and not the implementation of the service being invoked. However, a
looser coupling lessens the impact when the service contract changes.

Using the JAX-WS Dispatch API, service consumer logic can dynamically assemble
a request message at runtime and manage any response messages. Additional effort
is required to build service consumer logic that can build request messages that the
intended service can process.

CASE STUDY EXAMPLE

After using the Account service in production for some time, a new operation is
added to enhance account services. NovoBank wants to allow all required informa-
tion about new accounts to be sent to the service as XML on top of the binary image
that the initial version supported. Different branch offices use different systems to
capture	the	data	required	to	open	a	new	account,	such	as	traditional	“fat	client”	or	
browser-based solutions. Additionally, the details of the information stored with
new accounts change consistently.

The development team will design the new operation to process different types of
input XML formats, and deliver a generic piece of service consumer code that shows
how	to	invoke	the	new	operation	from	within	a	JAX-WS	supported	client.	Example	
7.34	 illustrates	 the	updated	WSDL	definition	 for	 the	 enhanced	Account	 service	 to	
accept the input of XML formats.

7.3 Service Loose Coupling 45

<definitions targetNamespace="http://personalbanking.services.
 novobank.com/" ...>
 <types>
 <xsd:schema>
 <xsd:element name="openAccount" type="ns1:openAccount"
 xmlns:ns1="http://personalbanking.services.novobank.com/"/>
 <xsd:complexType name="openAccount">
 <xsd:sequence>
 <xsd:element name="arg0" type="xs:base64Binary"
 xmime:expectedContentTypes="image/jpeg" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="openAccountXML" type="ns1:openAccountXML"
 xmlns:ns1="http://personalbanking.services.novobank.com/"/>
 <xsd:complexType name="openAccountXML">
 <xsd:sequence>
 <xsd:any/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="openAccountResponse"
 type="ns2:openAccountResponse"
 xmlns:ns2="http://personalbanking. services.novobank.com/"/>
 <xsd:complexType name="openAccountResponse">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:string" inOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>
 <message name="openAccount">
 <part name="parameters" element="tns:openAccount"/>
 </message>
 <message name="openAccountResponse">
 <part name="parameters" element="tns:openAccountResponse"/>
 </message>
 <message name="openAccountXML">
 <part name="parameters" element="tns:openAccountXML"/>
 </message>
 <portType name="Account">
 <operation name="openAccount">
 <input message="tns:openAccount"/>
 <output message="tns:openAccountResponse"/>
 </operation>
 <operation name="openAccountXML">
 <input message="tns:openAccountXML"/>

46 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 </operation>
 </portType>
...
</definitions>

Example 7.34
The updated WSDL definition for the enhanced Account service accommodates the new operation,
openAccountXML.

Note how the element named openAccountXML, which acts as the wrapper element
for the openAccountXML operation, contains only one <xsd:any/> element. The con-
tract indicates that any kind of XML content can be sent to the service without pro-
viding any further details, which allows for decoupling of the service logic from
the contract.

Use of the <xsd:any/> element minimizes the requirements for service consumers
of this service. Any XML document can be passed to the service, allowing the devel-
opment	of	generic	service	consumer	logic.	As	an	example	of	completely	decoupling	
the service consumer from the service, the NovoBank development team delivers
the	following	piece	of	client	code	to	the	users	of	the	Account	service	in	Example	7.35.

package com.novobank.services.personalbanking.client;

import java.io.StringReader;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;

public class Account2Client {
 public static String testMessage =
 "<ns1:openAccountXML xmlns:ns1=\"http://personalbanking.
 services.novobank.com/\"><someDocument><personalData>Here goes
 the information</personalData></someDocument> </
 ns1:openAccountXML>";

 public static void main(String[] args) throws Exception {
 QName serviceName =
 new QName("http://personalbanking.services.novobank.com/",
 "AccountService");

7.3 Service Loose Coupling 47

 QName portName = new QName("http://personalbanking.services.
 novobank.com/","AccountPort");

 Service service = Service.create(
 new URL("http://localhost:8080/account2/account2?wsdl"),
 serviceName);
 Dispatch<Source> dispatch = service.createDispatch(
 portName, Source.class, Service.Mode.PAYLOAD);
 dispatch.invoke(new StreamSource(new StringReader(testMessage)));
 }
}

Example 7.35
Java client code decouples the service consumer from the service for the Account service.

First, an instance of the Service class providing the location of the appropriate WSDL
file and the name of the targeted service is created. A Dispatch object is then created
from the Service class, and the Service.Mode.PAYLOAD is defined to indicate that
only the content within the SOAP <body> element and not the entire message will
be passed. Finally, the service can be invoked dynamically via the Dispatch object.
The service consumer has no compile-time dependency on the service or its contract.

The payload XML document has one root element called openAccountXML. Given
that	 the	 service	 definition	 used	 the	wrapped	 document/literal	 style	 described	 in	
the Mapping Between Java and WSDL section, this openAccountXML element indicates
which operation of the service is being invoked. Similarly, the service code can be
developed	in	a	flexible	way	with	regard	to	any	kind	of	input	message	being	sent,	of	
which	a	detailed	case	study	can	be	found	in	Chapter	8.	Even	though	any	XML	con-
tent can be sent to the service, the implementation logic will always have constraints
on	what	can	be	processed.	The	message	must	contain	data	meaningful	in	the	context	
of the invoked operation.

Another way of further decoupling a service consumer from the service is to insert
an intermediary between the two. The intermediary, generally deployed as part of an
ESB, can mediate the differences in message format and network protocol to further
decouple	the	service	consumer	and	service.	Chapter	12	explores	this	further	as	part	of	
its coverage of ESBs.

48 Chapter 7: Service-Orientation Principles with Java Web-Based Services

SUMMARY OF KEY POINTS

• For SOAP-based Web services, coupling between service contract and
implementation can also occur. Generating service contracts directly from
existing Java logic often exposes language-specific details and creates
an unwanted tight coupling between the logic and the contract. However,
service consumers can be developed in a generic way independent of a
particular service contract using the JAX-WS Dispatch API .

• With REST services, the service contract is tightly constrained by a known
set of media types and a handful of HTTP operations.

• Namespaces and Java package names can help structure code to control
and minimize the dependencies among service implementation pieces.

7.4 Service Abstraction

The appropriate level of abstraction at which services are described achieves additional
agility and alignment between business and IT areas of an enterprise. Abstracting
information means taking technical details out of a problem to be solved on a higher
level. Since the beginning of computer technology, information has been abstracted into
higher	levels	in	a	number	of	ways,	for	example:

	 •	 Assembler	constructs,	which	are	instructions	for	a	processor,	are	translated	into	a	
series of 1 and 0.

	 •	 Operating	systems	offer	access	to	system	resources	and	APIs	that	encapsulate	
lower-level constructs.

	 •	 Programming	languages,	such	as	Java,	introduce	a	more	abstract	way	of	
describing logic, which is then compiled into a format that the operating system
can understand.

Service-orientation continues the evolution of higher-level abstraction use to make cre-
ating	and	changing	solutions	easier.	For	example,	a	business	process	defined	with	WS-
BPEL describes a sequence of service invocations and the data flows between them by
expressing	this	sequence	in	XML	form	without	writing	any	actual	code.	A	side	effect	
of this increased abstraction is the ability to utilize visual programming tools that sup-
port the creation of process definitions via drag-and-drop-style interfaces. The Service
Abstraction principle advocates that the technical details of the technology platform

7.4 Service Abstraction 49

underlying a service contract are hidden from the service consumer. It also promotes
hiding non-essential details about the service itself.

Abstracting Technology Details

The service contract represents an abstraction of the functionality implemented in the
service logic. Included in this notion is the abstraction of technical resources utilized to
fulfill a service’s functionality.

Filenames, database tables, machine names, and network addresses should be omitted
from the service contract and completely hidden from service consumers. Given that a
service contract should always be designed with a particular business purpose in mind,
this should never be a problem.

Concerns	arise	when	services	are	generated	straight	out	of	existing	code,	because	tech-
nology	details	which	should	have	otherwise	been	abstracted	away	will	often	be	exposed.	
For	example,	whether	or	not	a	service	is	implemented	in	Java	or	running	in	a	Java	envi-
ronment such as Java EE should be completely irrelevant to the service consumer.

Hiding Service Details

Maximum	flexibility	is	achieved	when	the	technology	used	to	implement	a	service	and	
additional details about that service are hidden, which can be divided into information
about	the	input	or	output	message	format	and	contextual	information.	

Hiding the information about the input or output message format may seem counterin-
tuitive. If a service’s input and output messages are hidden, what is left to put into the
service contract? Message formats can be abstracted to a generic level without surren-
dering the message definition altogether.

For	example,	assume	a	Credit	Check	service	receives	customer	 information	as	 input.	
The	customer	information	can	be	defined	and	represented	by	a	Customer	complex	type	
in the XML schema definition to a detailed level, adding constraint information to each
attribute and element of that schema. The length of the lastName character field is lim-
ited	to	35	characters	in	Example	7.36.

50 Chapter 7: Service-Orientation Principles with Java Web-Based Services

<complexType name="Customer">
 <sequence>
 <element name="firstName" type="string"/>
 <element name="lastName">
 <simpleType>
 <restriction base="string">
 <length value="35"/>
 </restriction>
 </simpleType>
 </element>
 <element name="customerNumber" type="string"/>
 </sequence>
</complexType>

Example 7.36
XML schema definition with added constraint inheritance can limit the lastName field to a set number of characters.

The	XML	schema	definition	in	Example	7.36	maps	to	a	Java	class,	Customer.java, as
seen	in	Example	7.37.	(The	generated	Javadoc	comments	are	omitted.)

public class Customer {
 @XmlElement(required = true)
 protected String firstName;
 @XmlElement(required = true)
 protected String lastName;
 @XmlElement(required = true)
 protected String customerNumber;

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String value) {
 this.firstName = value;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String value) {
 this.lastName = value;
 }
 public String getCustomerNumber() {
 return customerNumber;
 }
 public void setCustomerNumber(String value) {

7.4 Service Abstraction 51

 this.customerNumber = value;
 }
}

Example 7.37
The generated Java type does not include the schema type restriction.

NOTE

The limit on the length of the lastName element was not carried over into
Java because Java has no concept of a fixed-length string.

On the opposite end of the abstraction spectrum would be a message definition stat-
ing that the incoming message is an XML document with a root Customer element. No
information is given about individual attributes or elements contained in the document,
as	seen	in	Example	7.38.

<complexType name="Customer">
 <sequence>
 <any/>
 </sequence>
</complexType>

Example 7.38
An XML schema definition using the <any/> element

The	generic	type	definition	leads	to	a	generic	Java	class,	as	shown	in	Example	7.39.

public class Customer {
 @XmlAnyElement(lax = true)
 protected Object any;
 public Object getAny() {
 return any;
 }
 public void setAny(Object value) {
 this.any = value;
 }
}

Example 7.39
The <any/> element is mapped to java.lang.Object.

52 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Hiding service details and increasing what is abstracted about a service may always
appear to be a prudent step. However, the service consumer is sometimes not provided
with	all	of	the	necessary	information	on	what	exactly	the	service	expects	and	what	will	
be returned in response. Details of an interaction on both sides are left to be resolved at
design-time or runtime (outside of the service contract).

In	Example	7.38,	the	generic	version	states	that	a	Customer object contains a java.lang.
Object, which must be defined at runtime to allow for processing. Generally, more Java
code must be written for errors that can occur at runtime. For XML payloads, this con-
sideration is equally valid for SOAP and REST services, as the mechanics perform the
same role for both in mapping XML to Java via a binding tool such as JAXB. An abstract
service contract can be appropriate in some instances, such as utility services.

Contextual	data	can	also	be	hidden,	as	this	type	of	data	is	commonly	about	an	interac-
tion which does not contain any business-relevant payload information. When using
SOAP-based	Web	services,	SOAP	header	fields	store	contextual	data,	 such	as	unique	
message identifiers, timestamps, and service consumer identity. For greater abstraction,
detailed	information	about	contextual	header	fields	can	be	left	out	of	the	service	con-
tract	altogether.	This	contextual	information	can	be	added	or	removed	depending	on	
the environment in which a service runs, is not relevant for its business purpose, and
can often be left out of the contract.

For	REST	services,	in	the	absence	of	any	kind	of	a	payload	envelope,	contextual	infor-
mation must be part of a resource representation. Such resource metadata can still be
packaged inside specially designated header elements. The technical details of a service
that are not part of the service interface, such as a WSDL or service-level information
about response times and availability, can be abstracted. The technical details can be
important to know, but often change and depend on a particular runtime environment
and deployment of a service. For REST services, such service-level agreement character-
istics can be described in a separate document.

Document Constraints

Non-technical information about a service cannot be articulated in a standard format.
A	generic	example	of	this	is	a	service-level	agreement,	but	may	also	include	other	con-
straints about the usage of a service, valid ranges of input data beyond what can be
expressed	in	WSDL	and	XML	schema,	and	any	additional	applicable	documentation.

A service can be implemented and deployed in different ways throughout an enter-
prise. As such, this documentation should not be directly linked with a service. Java, for

7.5 Service Composability 53

example,	is	well	suited	for	deployment	on	multiple	platforms	and	operating	systems.	A	
Unix-based	environment	has	different	performance,	scalability,	and	availability	charac-
teristics than a Windows-based system. Additionally, a Java EE application server can
be leveraged to host the Java logic. A service instance can run on just one server instance
on a small machine. As reuse of the service increases, the service instance can be moved
to a clustered environment with greater computing power.

As	per	the	Dual	Protocols	pattern,	a	Web	service	offered	over	HTTP	can	be	later	exposed	
via JMS for additional reliability requirements by particular service consumers. Abstract
service contracts provide the freedom to make changes throughout the lifetime of the
service, without breaking or violating previous versions. REST service implementations
are synonymous with HTTP, making transport mechanism abstraction a non-issue. As
the information about a service grows in abstraction, the service implementation and
service	consumer	logic	must	become	more	flexible	to	anticipate	future	changes.

SUMMARY OF KEY POINTS

• Details about a specific technology used to implement and/or host a service
should be abstracted out of a service contract, which is achieved by REST
services over HTTP by default.

• Services can be built in a more abstract fashion by using abstract and
generic message specifications and leaving contextual information out of
the service contract altogether.

• Non-technical information about a service often assumes a separate life-
cycle from the service contract and its implementation.

7.5 Service Composability

The	composability	of	a	service	is	an	implicit	byproduct	of	the	extent	to	which	the	other	
service-orientation design principles have been successfully applied. The ability to
compose services into new, higher-level services is an inherent, logical consequence
if	the	other	design	principles	outlined	in	this	chapter	are	followed.	For	example,	a	ser-
vice contract that is standardized allows interaction and composition between services
implemented in different languages using different runtime environments. Decou-
pling a service implementation from its contract allows the same logic to be reused in
other compositions.

54 Chapter 7: Service-Orientation Principles with Java Web-Based Services

With regards to the implications that service composability has for the service contract,
this section highlights some of the issues and requirements for the runtime environ-
ment	in	which	the	services	run.	See	Chapter	11	for	further	exploration	of	service	com-
position with Java.

Runtime Environment Efficiency

A highly efficient and robust runtime environment is required for service composi-
tions. The ability for services to participate in multiple compositions places severe chal-
lenges on runtime environments and must be taken into account when designing a
service inventory.

If a service is used by multiple compositions, applying different non-functional charac-
teristics can be necessary. One composition rarely invokes a service with no particular
requirement for fast response times, whereas another composition using the same ser-
vice can require support for high transaction loads with short response times. Similarly,
one composition can require a reliable connection between the composition controller
and its members, whereas another can be tolerant of lost messages. Applying different
QoS definitions to the same service, depending on the composition, must be possible
without requiring code changes in the service logic itself.

Java, as a programming language, has no built-in features that help or hinder the run-
time environment. In most cases, Java-based services are hosted in a Java EE-compliant
application server or an alleged Web server environment, which is Java SE-compliant.
In either case, the runtime environments provide advantages over other traditional
server platforms in terms of composability.

NOTE

Depending on how a given service or service consumer participates in a
service composition at runtime, it may assume one or more roles during
the service composition’s lifespan. For example, when a service is being
composed, it acts as a composition member. When a service composes
other services, it acts as a composition controller. To learn more about
these roles, visit www.serviceorientation.com or read Chapter 13 of SOA
Principles of Service Design .

7.5 Service Composability 55

Java EE defines the management of solution logic according to the roles people perform,
such as component provider, deployer, and assembler. As a result, much of the informa-
tion	on	the	execution	of	solution	logic	at	runtime	is	not	hardcoded	into	the	logic	itself	
but is instead stored in declarative configuration files, called deployment descriptors.
The same piece of Java code can be used differently with different deployment descrip-
tors and changed at runtime without requiring recompilation of the code. Despite being
undefined by the Java EE standard, most Java EE application servers support defin-
ing individual server instances with specific runtime definitions. One instance usu-
ally runs in one process with its own configuration for elements like thread pools or
memory heap sizes. In many cases, instances can be clustered to provide one logical
application server across multiple physical processes or machines.

Separating runtime information about a component from its actual logic is possible
because the Java EE application server runs as a container. This means that all incoming
and outgoing data is intercepted and processed by the application server based on the
current	configuration.	For	example,	if	a	certain	piece	of	Java	logic	can	only	run	within	
the scope of a transaction, the container can be configured to ensure a transaction is
present whenever this piece of logic is invoked.

The same approaches to the runtime environment apply to Web services on two levels:

	 1.	 The	runtime	environment	that	processes	an	incoming	message,	such	as	a	SOAP	or	
REST request message, can perform several tasks before forwarding the request
to the actual service. These tasks include the ability to decrypt data sent in an
encrypted form, establish handshaking between service consumer and service by
returning acknowledgement that the message has been received, interpret infor-
mation in the request message header indicating that the invocation of the service
must be part of a distributed transaction, and convert incoming XML data into
Java objects.

	 2.	 For	SOAP-based	Web	services,	JAX-RPC	and	JAX-WS	provide	a	mechanism	and	
an API that allow the insertion of custom logic to parse, interpret, or change
incoming and outgoing messages. The custom logic runs inside a handler. For
JAX-RS-based implementations of REST services, such interception logic can be
implemented by developers in special entity handlers known as entity provid-
ers.	The	JAX-RS	2.0	release	provides	added	filters	and	interceptors	otherwise	not	
included in previous versions.

Both approaches are similar regardless of the Web services used. One is controlled by the
user of the system, whereas the other is implicitly included with the runtime. Reading

56 Chapter 7: Service-Orientation Principles with Java Web-Based Services

and manipulating incoming and outgoing messages separate from the service logic is
crucial to supporting the Service Composability principle. Composing hosted services,
including both composition members and composition controllers, is supported by the
concept of containers and deployment descriptors and enhanced by SOAP-based Web
services, such as handlers.

Ultimately, implementing a highly efficient runtime allows the developer to focus on
the business logic of the actual service implementation, leaving everything else to the
underlying	Java	platform.	More	advanced	technologies,	such	as	the	SCA,	expand	on	this	
concept by separating core business logic implementation further away from aspects of
a service component, such as the protocol bindings used to interact with service con-
sumers and other services used to fulfill functionality.

Service Contract Flexibility

Service contracts can be designed to increase the ability of a service for multiple compo-
sitions. Generally, multiple compositions are only applicable to the composition mem-
bers	for	increasing	the	reusability	of	a	service	in	different	business	contexts	or	business	
tasks. A service contract can be rewritten to enable reuse of a service without changing
the core functionality of the service.

To	write	a	flexible	service	contract	that	is	reusable,	recall	the	following	approaches:

	 •	 Use	generic	data	types	or	supertypes	instead	of	concrete	subtypes.	If	an	enter-
prise deals with both commercial customers (CommercialCustomer) and personal
customers (PersonalCustomer), evaluate whether a common supertype can be
established for both (Customer) to be used in the service contract. JAXB supports
polymorphism to ensure that the appropriate Java object is created when a mes-
sage containing a subtype is received.

	 •	 Decouple	the	service	contract	from	its	underlying	runtime	platform	by	hiding	
details about QoS characteristics, which can change over time and will vary
depending on service consumer requirements and how a service is deployed.

	 •	 Decouple	the	service	implementation	from	its	contract	by	utilizing	generic	APIs,	
such as the JAX-WS Provider API for SOAP-based Web services. For REST ser-
vices, deal with generic Java types in resource methods, such as String, byte[],
and InputStream. Note that generated generic service consumer or service logic
results in additional code that must be developed and tested.

7.5 Service Composability 57

Standards-Based Runtime

Composition members and controllers benefit from a runtime environment that sup-
ports a wide range of accepted standards. Composing services means the services inter-
act and interoperate. Interoperability of services is supported by a runtime environment
upheld by relevant standards, such as the WS-I. Java’s APIs for SOAP-based Web ser-
vices, JAX-RPC and JAX-WS, require support for the WS-I Basic Profile, which allow
services to be designed with a high degree of interoperability. REST services achieve
full interoperability inherently through HTTP.

Advanced standards relevant in a composition of services include the WS-Security stan-
dards	for	which	a	WS-I	profile	also	exists,	the	WS-Transaction	and	related	standards,	
WS-Addressing,	and	WS-ReliableMessaging,	which	supports	the	reliable	exchange	of	
messages between services. These advanced standards are combined in another WS-I
profile known as the Reliable Secure profile.

SUMMARY OF KEY POINTS

• Composability is supported in utilizing a runtime environment that allows
hosting both composition members and composition controllers efficiently
and flexibly, such as Java EE-compliant application servers.

• Creating flexible service contracts can facilitate the use of services as com-
position members.

• Platforms that support accepted and established standards can be utilized
to improve service interoperability and composability.

58 Chapter 7: Service-Orientation Principles with Java Web-Based Services

7.6 Service Autonomy

Service-orientation	revolves	around	building	flexible	systems.	Flexibility	is,	to	a	large	
degree, achieved through making services decoupled and autonomous to enable them
to be composed, aggregated, and changed without affecting other parts of the system.
For a service to be autonomous, the service must be as independent as possible from
other services with which it interacts, both functionally and from a runtime environ-
ment perspective. Java and Java EE provide a highly efficient runtime environment
that	supports	service	composition.	For	example,	a	Java	EE	application	server	supports	
concurrent access to its hosted components, making each access to such a component
autonomous from the others.

Well-Defined Functional Boundary

Occasionally, the functional boundary is defined by a certain business domain that a
service lives within, as is the case if a service implements a particular business process
or task within that domain. Alternatively, the functional boundary of a service can be
described by the type of data the service operates on, such as entity services.

Translating this requirement into Java and XML schema utilizes namespaces and Java
packages as structuring elements. Checking the list of imported classes and packages
for a particular service implementation will help identify dependencies throughout the
system and provide an indication of whether the functional boundary of the service is
maintained in its implementation.

For	example,	an	entity	service	called	Customer	delivers	customer	data	retrieved	from	a	
variety of data sources for reuse across many business processes. The service is defined
in the http://entity.services.acme.com/Customer namespace and uses com.
acme.services.entity as the Java package for its implementation. The Customer ser-
vice imports a package called com.acme.services.accounting, which immediately
identifies that the Java service implementation contains a potentially undesired depen-
dency on a business domain-specific piece of code. This warrants further investigation
of the underlying logic and removal of the dependency.

The Customer service has a well-defined functional boundary in delivering rele-
vant customer data to its service consumer. However, a dependency on logic specific
to the Accounting service business domain naturally reduces the autonomy of the
Customer service.

7.6 Service Autonomy 59

Runtime Environment Control

The underlying runtime influences the degree of autonomy a service can achieve. For
each service to have control over its runtime environment, the environment must be
partitioned	 to	 allocate	 dedicated	 resources	 accordingly.	 The	 JVM	 offers	 all	 internal	
code	 a	 degree	 of	 autonomy	 by	 isolating	 the	 executed	 code	 from	 the	 operating	 sys-
tem and providing controlled access to physical resources, such as files or communi-
cation ports. Java EE application servers leverage the concept of a container in which
components run.

For SOAP-based Web services, runtime control in Java can be achieved (while maintain-
ing	a	high	degree	of	autonomy)	by	exposing	plain	JavaBeans	as	Web	services	or	utiliz-
ing Stateless Session EJBs. The service implementation and all other relevant artifacts,
such as WSDL files, are packaged in a module, such as a JAR or WAR file, which can
then be installed on an application server independent of other code running on that
server.

The same is true for non-Web services or services implemented as regular EJBs. The
components related to the service have individual private deployment descriptors that
can be configured on the application server as independent entities.

Java EE allows for the packaging of multiple modules and multiple services in one Enter-
prise ARchive file. This EAR file is deployed and installed on the application server as
an independent enterprise application. To increase a service’s autonomy, use of only one
service packaged per EAR file is recommended. This allows each service to be treated as
a completely independent unit to configure, start, stop, or replace without affecting any
other services running on the same system.

To decrease the number of moving parts in the environment, however, multiple services
can be packaged into one enterprise application. Co-locating services is suitable when
the services interact frequently with each other in a performance-critical manner.

In JAX-RS, POJOs are more commonly used to model Web resources, although stateless
and single session beans can be designated as root resource classes. The JAX-RS run-
time packages the resource artifacts into a WAR or EAR file which can be deployed as
a standalone module in an application server. Some JAX-RS implementations support
embeddable containers, in which a JAX-RS runtime is bootstrapped from inside a driver
program for testing purposes.

60 Chapter 7: Service-Orientation Principles with Java Web-Based Services

High Concurrency

Developing services for reuse across multiple service consumers is a benefit of
implementing service-oriented design. The considerations presented in the
Agnostic Functional Contexts and Concurrent Access to Service Logic sections help illustrate
the	benefits	of	providing	each	service	consumer	exclusive	access	to	a	certain	instance	of	
the service implementation, which is true regardless of whether the service implemen-
tation is located in a JavaBean or is a stateless session EJB.

For REST services, the default lifecycle of root resource classes is per-request. A new
instance of a root resource class is created every time the request URL path matches the
@Path annotation of the root resource. With this model, resource class fields can be uti-
lized without concern for multiple concurrent requests to the same resource. However,
a resource class can also be annotated with the javax.inject.Singleton annotation,
creating only one instance per Web application. Using the default lifecycle model for
resources is recommended, unless compelling reasons arise to do otherwise.

In general, each Java component that implements a service is accessible concurrently by
definition via the application server. However, installing the same service separately on
different machines is also acceptable. The ultimate autonomy of a service is achieved
if one instance of a service, running in its own process and controlling all of its under-
lying resources, serves only one specific service consumer. While inefficient from a
resource utilization and maintenance perspective, requirements can dictate a service as
part of a mission-critical business process which requires high performance and high
transaction loads that force a dedicated instance of the service to be deployed for that
specific purpose.

NOTE

Establishing environments that support high levels of concurrent access
introduces scalability considerations that some IT enterprises may not be
equipped to handle, relational directly to the amount of service composi-
tions a given service participates in and the amount of access within each
composition the service is subjected to.

Cloud computing platforms provide infrastructure with IT resources that
can dramatically improve the extent to which the Service Autonomy princi-
ple can be applied to a service implementation, by reducing or eliminating
the need for the service implementation to share or compete for resources
within the enterprise boundary. For more information about scalability and
elasticity as part of cloud computing environments, see the series title
Cloud Computing: Concepts, Technology & Architecture .

7.7 Service Statelessness 61

SUMMARY OF KEY POINTS

• A well-defined functional boundary of a service, reflected in its contract,
ensures a high degree of autonomy. However, this boundary must also be
maintained in the service implementation by avoiding any dependencies on
other services outside of that functional boundary.

• A service can increase autonomy by having complete control over its run-
time. Java and Java EE support control over the runtime with the concept of
containers, which depict virtual runtime boundaries that can be controlled
individually and independently .

• Despite being accessed concurrently by multiple service consumers, ser-
vices running in a Java application server can run autonomously on behalf
of each service consumer. The JAX-WS and JAX-RS programming models
automatically ensure that a new thread is started for each new
service request .

• Highly critical services can have total autonomy by being deployed on a
server for exclusive access by one particular service consumer.

7.7 Service Statelessness

Each invocation of a service operation is completely independent from any other invo-
cation, whether by the same service consumer or any other service consumer. The Ser-
vice Statelessness principle offers various benefits centered around improved scalability
by which additional stateless service instances can be easily provisioned on available
environments. With the advent of cloud computing, on-demand scaling out of services
is considered as a natural evolutionary step for stateless services.

Many	real-life	business	scenarios	can	be	expressed	as	business	processes	that	include	
automated steps, which can require manual intervention. Designing and implementing
such	a	process	requires	some	state	to	be	maintained	for	the	duration	of	the	process.	Execut-
ing an instance of the process definition forms the notion of a session or transaction across
multiple	service	invocations.	Therefore,	a	service	implementing	the	execution	of	a	busi-
ness	process	cannot	be	stateless	and	may	need	to	even	maintain	context	information	over	
extended	periods.	

62 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Orchestration Infrastructure

An	orchestration	infrastructure,	such	as	a	WS-BPEL	execution	environment,	will	sup-
port	state	maintenance	either	by	storing	state	in	the	local	stack	of	the	thread	executing	
the process or in a permanent relational data store. A permanent relational data store
ensures that a process instance can be continued after a system crash or other interrup-
tion.	This	style	of	statefulness	is	built	into	WS-BPEL	and	its	execution	environment,	so	
there is little to be aware of when designing such a service. Designing a service that
aggregates other service invocations in its implementation without utilizing WS-BPEL
will require the developer to decide whether to store temporary data in a relational data
store for later recovery in case of failure.

Session State

Another aspect of achieving service statelessness occurs when a service must establish
some form of session with a service consumer, such as when the state is not kept in the
calling logic but in the called service itself. Compare this to the shopping cart scenario
in which a service consumer uses a service repeatedly to collect a set of data, which is
then committed all in one final step. Java Servlets, which at the core also offer a stateless
programming model, leverage the HTTPSession information and the concept of cookies
to enable data to be stored on behalf of a certain client.

For REST services, using cookies as handles to store client state violates the stateless
constraint of a REST-style architecture. Any maintenance of server-side session state is
not recommended, and REST limits application state to be held on the client and not on
the server.

Using	cookies	breaks	the	statelessness	model	as	 the	server	 is	expected	to	maintain	a	
reference to a session and use the information in the incoming cookie for discovery.
Each	invocation	is	expected	to	carry	the	complete	contextual	information	without	any	
references to any previous interaction, promoting scalability where any available ser-
vice instance can process this request. For idempotent requests, the failed request can be
redirected to another functioning stateless service. Note that the convenience of server-
side session maintenance and the associated personalization benefits are sacrificed for
superior scalability and optimum resource usage.

REST services can read or write state information for various domain entities from or
to databases or other persistent stores, but storing client state violates the statelessness
constraint with implications for scalability and resilience. SOAP-based Web services

7.7 Service Statelessness 63

have no such constraints and the servlet model is leveraged by JAX-WS to handle
stateful interactions.

Storing State

Two methods are available for clients to store state as part of a repeated interaction with
a servlet. The first allows the data to be sent back and forth with each request, and the
amount of data grows with each invocation. The second method enables the servlet to
maintain the state, and the servlet sends back a key to this data (the cookie). The client
sends the same key along for a subsequent request, which allows the servlet to retrieve
the appropriate state for this particular client. The interface used to store the data is
called javax.servlet.http.HTTPSession.

The behavior described in maintaining a key is a well-defined part of the standard serv-
let programming model, and APIs are available to enable its use. The javax.servlet.
http.HTTPSession interface offers methods for storing simple key-value pairs. JAX-WS
describes a mechanism to pass a reference of the HTTPSession instance into the service
implementation class.

A Web service implementation can be made stateful by leveraging HTTP sessions and
the JAX-WS support for the sessions. This requires that the service consumer receives
and reuses the cookie sent back with the response to the original HTTP POST request.

CASE STUDY EXAMPLE

Several of NovoBank’s business processes require that certain forms and brochures
be mailed to customers. The need for mailing each form is established in a sepa-
rate part of the process, but in each case, the same back-end system is called via a
Web service interface offering an addOrderForm operation. To reduce mailing costs,
the design team makes the service establish a session with each process instance
so that all orders can be bundled together. This requires the service to keep track
of all forms requested. All orders are confirmed at once with the invocation of the
confirm operation.

Example	7.40	shows	an	excerpt	of	the	WSDL	definition	for	the	Order	Form	service.

64 Chapter 7: Service-Orientation Principles with Java Web-Based Services

<definitions targetNamespace="http://utility.services.novobank.com/"
 name="OrderFormService"
 xmlns:tns= "http://utility.services.novobank.com/"
 xmlns:xsd= "http://www.w3.org/2001/XMLSchema"
 xmlns:soap= "http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns= "http://schemas.xmlsoap.org/wsdl/">
 ...
 <xs:element name="addOrderForm" type="ns1:addOrderForm"
 xmlns:ns1="http://utility.services.novobank.com/"/>
 <xs:complexType name="addOrderForm">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="addOrderFormResponse" type="ns2:
 addOrderFormResponse" xmlns:ns2="http://utility.services.
 novobank.com/"/>

 <xs:complexType name="addOrderFormResponse"/>
 <xs:element name="confirm" type="ns3:confirm" xmlns:ns3= "http://
 utility.services.novobank.com/"/>

 <xs:complexType name="confirm">
 <xs:sequence>
 <xs:element name="arg0" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 ...
 <xs:element name="confirmResponse" type="ns4:confirmResponse"
 xmlns:ns4="http://utility.services.novobank.com/"/>
 <xs:complexType name="confirmResponse"/>
 <portType name="OrderForm">
 <operation name="addOrderForm">
 <input message="tns:addOrderForm"/>
 <output message="tns:addOrderFormResponse"/>
 </operation>
 <operation name="confirm">
 <input message="tns:confirm"/>
 <output message="tns:confirmResponse"/>
 </operation>
 </portType>
</definitions>

Example 7.40
The WSDL definition for the Order Form service

7.7 Service Statelessness 65

Nothing in the contract indicates that the addOrderForm() operation keeps state
from previous invocations by the same client in its HTTPSession, meaning this infor-
mation must be documented elsewhere.

Example	7.41	identifies	the	implementation	class	for	the	Order	Form	service	with	the	
addOrderForm() operation in Java.

package com.novobank.services.utility;

import java.util.Vector;
import java.util.Iterator;
import javax.annotation.Resource;
import javax.jws.WebService;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;

@WebService
public class OrderForm {

 @Resource
 private WebServiceContext webServiceContext;

 public void addOrderForm(String formNumber) {
 System.out.println("Form with number "+formNumber+" was
 ordered.");
 HttpSession session = retrieveSession();
 Vector<String> formList = (Vector<String>)session.
 getAttribute("formList");
 if (formList==null) {
 formList = new Vector<String>();
 }
 formList.add(formNumber);
 session.setAttribute("formList", formList);
 }

 private HttpSession retrieveSession() {
 MessageContext messageContext = webServiceContext.
 getMessageContext();
 HttpServletRequest servletRequest =
 (HttpServletRequest)messageContext.get(MessageContext.
 SERVLET_REQUEST);
 return servletRequest.getSession();

66 Chapter 7: Service-Orientation Principles with Java Web-Based Services

 }
...
}

Example 7.41
The implementation class for the Order Form service

Each invocation of the addOrderForm() method retrieves the HTTPSession instance
by using the WebServiceContext attribute injected via the @Resource annota-
tion. This attribute provides access to the MessageContext for the request, which
in turn stores a pointer to the servlet request object. Finally, the servlet request
allows the session to be retrieved. These steps are all encapsulated in the private
retrieveSession() method.

The list of ordered form numbers is stored in a Vector, which is kept in the
HTTPSession under the name formList. Each time the addOrderForm() method is
called, the new form number is added to that Vector.

What	is	missing	from	Example	7.41	is	the	implementation	for	the	confirm() opera-
tion. This is where the accumulated information from previous invocations is used,
as	seen	in	Example	7.42.

public void confirm(String customerNumber) {
 HttpSession session = retrieveSession();
 List<String> formList = (Vector<String>)session.
getAttribute("formList");
 if (formList==null) {
 System.out.println("No orders found.");
 } else {
 System.out.println("Confirming "+formList.size()+" orders.");
 for (String s : formList) {
 System.out.println("Order for Form " + s + ".");
 }
 session.removeAttribute("formList");
 }
}

Example 7.42

Access to the HTTPSession is provided using the same private method called retrie-
veSession() which provides the complete list of ordered forms. Note how the list is
reset by setting the formList attribute in the Vector to null after processing.

7.7 Service Statelessness 67

The service consumer of this Web service must store the cookie returned from the
first invocation to send along with any subsequent invocations, which JAX-WS is
equipped to manage. The NovoBank team decides to provide a sample client along
with	their	service	for	service	consumer	reuse,	as	shown	in	Example	7.43.

package com.novobank.services.utility.client;

import java.util.Map;
import javax.xml.ws.BindingProvider;

public class OrderFormClient {

 public static void main(String[] args) {
 OrderForm orderForm =
 new OrderFormService().getOrderFormPort();

 Map<String, Object> requestContext =
 ((BindingProvider)orderForm).getRequestContext();

 requestContext.put(BindingProvider.SESSION_MAINTAIN_PROPERTY,
 true);

 orderForm.addOrderForm("123");
 orderForm.addOrderForm("456");
 orderForm.confirm("any customer");
 }
}

Example 7.43
Sample client code for the Order Form service

Note	 that	 the	 local	 service	 proxy	 is	 cast	 to	 the	 javax.xml.ws.BindingProvider
interface	so	that	 the	request	context	can	be	retrieved	and	the	SESSION_MAINTAIN_
PROPERTY value can be set to true.

HTTP	sessions	and	JAX-WS	are	only	applicable	for	services	with	SOAP/HTTP	bindings,	
although similar behavior in a service not accessed over HTTP can be created using the
same principles. At invocation by a specific service consumer, the service can return a
unique identifier to the service consumer, such as in the SOAP response header, and
expect	that	identifier	to	be	returned	with	every	subsequent	request.	The	service	uses	the	
identifier as a key into a table where the data is stored.

68 Chapter 7: Service-Orientation Principles with Java Web-Based Services

How the data is physically stored depends on the developer’s requirements. The data
stored on behalf of specific service consumers must be recoverable across a server
restart persistently in a relational database, which can be accessed using JDBC or a
similar mechanism.

Note	that	state	as	discussed	in	this	section	is	usually	transient	and	only	exists	for	the	
duration of the interaction with the relevant service consumer. Business-relevant data,
which needs to be persisted permanently, would not be stored using the mechanisms
described. Business data should be stored using data access APIs, such as JDBC, or per-
sistence frameworks, such as JPA or Hibernate.

SUMMARY OF KEY POINTS

• Many scenarios require data to be stored beyond a single invocation of a
service in the calling service, such as from either within a WS-BPEL pro-
cess or in the called service. Data is often stored for long durations.

• JAX-WS provides a mechanism to utilize the HTTPSession object to store
temporary state on behalf of a specific service consumer.

• Business-relevant data that must be stored permanently should be handled
through entity services that explicitly wrap the handling of such data.

7.8 Service Discoverability

The two primary aspects of the Service Discoverability principle are discovery at design-
time (which promotes service reuse in a newly developed solution), and discovery at
runtime (which involves resolving the appropriate endpoint address for a given service
or retrieving other metadata). Even though the information can be physically stored in
one place, the way in which the information is accessed in each scenario varies.

Design-Time Discoverability

At	design-time,	it	is	important	for	project	teams	to	be	able	to	effective	identify	the	exis-
tence of services that contain logic relevant to the solution they plan to build. This way
they can either discover services that they can reuse or confirm that new service logic
they	plan	to	build	does	not	already	exist.	For	example,	a	service	is	designed	to	address	

7.8 Service Discoverability 69

an Order Management business process for which customer information is required.
The service designer must investigate whether a Customer	data	type	already	exists,	and	
if so, determine whether it meets the requirements for the Order Management Process
service. If the data sent into the newly designed service is missing information, the
designer can also check whether an entity service encapsulating all data access to this
type	of	data	exists.	Additional	customer	information	required	can	be	built	or	retrieved	
via a Customer entity service.

During the design of a new service, several types of artifacts must be evaluated for
reuse directly on the new service’s interface and within the service via some kind of
aggregation.	 This	 includes	 non-functional	 aspects,	 which	 may	 not	 be	 expressed	 in	
machine-readable	form.	Meta	information,	such	as	performance	and	reliability	of	exist-
ing	services,	can	influence	whether	a	service	is	reusable	in	a	new	context.

Code	can	exist	for	existing	data	type	definitions.	JAXB,	for	example,	defines	a	mapping	
between XML schema and Java. Java code can be directly generated from a schema
definition and reused wherever that particular data type is used.

All of the relevant information must be available to the designer during design-time,
ideally via the development environment directly. This relevant information includes
the artifacts themselves, such as the WSDL, XML schema, and Java source code as well
as relationships and dependencies between them. These dependencies must be docu-
mented thoroughly, as part of the service profile so that a complete metamodel of the
service	exists	once	the	design	is	complete.

Since the design of a service is manually performed by a service designer, this informa-
tion must be accessible and searchable by humans. How this feature is enabled depends
on the registry type used and the access mechanisms offered, without depending on
the programming language used to implement services or on the runtime platform that
the service will run on. The underlying mechanism should offer a way to control access
to the information and support versioning of artifacts.

Runtime Discoverability

Runtime service discovery refers to the ability of software programs to programmati-
cally	search	for	services	using	APIs	exposed	by	the	service	registry.	Doing	so	allows	
for the retrieval of the physical location or address of services on the network. Because
services may need to be moved from one machine to another or perhaps redundantly
deployed on multiple machines, it may be advisable for service addresses not to be
hardcoded into the service consumer logic.

70 Chapter 7: Service-Orientation Principles with Java Web-Based Services

For SOAP services using JAX-WS, the location of the target service is included in the
<port> element of the WSDL definition by default. In turn, the location of the WSDL
file is automatically added to the generated ...Service class and passed to the tool-
ing, or wsimport, that generates the appropriate service consumer artifacts. Pointing
to the local WSDL file in the filesystem will result in a service consumer that cannot
be moved to a different environment, because functionality depends on that particular
location for the WSDL file and the endpoint address contained by the WSDL file.

Using the URL and appending "?wsdl"	to	the	service	is	a	more	flexible	approach.	For	
example,	 a	 service	 can	 be	 located	 at	 myhost.acme.com:8080/account/account, in
which case the WSDL definition can be retrieved via the URL http://myhost.acme.
com:8080/account/account?wsdl. During the installation and deployment of a ser-
vice, the endpoint information in this WSDL file is updated to reflect the real address of
the hosting system.

The	address	points	to	a	fixed	location	for	the	WSDL	file	despite	now	residing	on	the	
network, meaning the address of any target services should always be resolved sep-
arately from the generated service consumer code. JAX-WS provides a way to set a
target	endpoint	address	on	a	proxy	instance	at	runtime	that	utilizes	 the	javax.xml.
ws.BindingProvider	interface.	Each	proxy	implements	this	interface	and	allows	prop-
erties	to	be	dynamically	set	on	an	exchange	between	a	service	consumer	and	service,	
with	the	endpoint	address	being	one	of	the	pre-defined	properties.	The	code	in	Example	
7.44	illustrates	how	a	service	consumer	sets	a	new	endpoint	address	on	a	service	proxy	
before invocation.

String endpointAddress = ...; //retrieve address somehow
OrderForm orderForm =
 new OrderFormService().getOrderFormPort();
 java.util.Map<String, Object> requestContext = (javax.xml.
 ws.BindingProvider)orderForm).getRequestContext();
 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 endpointAddress);
orderForm.addOrderForm("123");

Example 7.44

The WSDL location can alternatively be set for a service at runtime instead of the end-
point address, to maintain the address of the service together with the rest of the service
contract	in	its	WSDL	file	and	not	in	multiple	locations,	as	shown	in	Example	7.45.

7.8 Service Discoverability 71

URL wsdlLocation = ...; //retrieve WSDL location
OrderFormService orderFormService =
 new OrderFormService(wsdlLocation, new QName("http://utility.
 services.novobank.com/", "OrderFormService"));
OrderForm orderForm = orderFormService.getOrderFormPort();
orderForm.addOrderForm("123");

Example 7.45

In addition to the lookup of a service endpoint address, other artifacts can be used by
service consumers at runtime to identify an appropriate service and build the applicable
request message. The JAX-WS Dispatch API allows a service request to be completely
built at runtime. Theoretically, a service consumer could look up a WSDL definition at
runtime, read its portType and XML schema definitions, and build the right messages
from scratch. However, building a service request completely at runtime is impractical
in a real-life scenario, as the service will likely perform poorly and require plenty of
tedious coding.

Non-functional	 characteristics	 of	 a	 service	 are	 other	 examples	 of	 information	 that	
a	 service	 consumer	 can	discover	 at	 runtime.	 For	 example,	 assume	 that	 two	physical	
instances	of	a	service	exist	on	both	a	slower	machine	and	a	faster	machine.	The	service	
consumer can retrieve this information and select the appropriate service to be used,
depending	on	the	business	context	of	the	call.	For	instance,	a	silver	customer	is	routed	
to the slower machine, whereas a gold customer is routed to the faster machine. The
service is still implemented in both invocations, as the differentiation in routing is a
non-functional characteristic.

API endpoints are unnecessary in a REST-based system because no RPC-style invo-
cation is involved. Recall that URI-based addressability, like statelessness, is a formal
REST constraint. Resources that offer services are the fundamental entities and must be
discoverable through URIs before clients can invoke operations on them. The hyperme-
dia constraint, if followed accurately, requires only the URI of the root resource to be
provided to the service consumer.

Various	operations	on	the	root	resource	will	publish	URIs	of	related	resources,	which	
can then be used by the service consumers to reduce the amount of foreknowledge
required. However, service consumers would still require knowledge of the semantics
associated with the URIs to be able to make meaningful use of them, which makes this
approach impractical in real-life application.

72 Chapter 7: Service-Orientation Principles with Java Web-Based Services

Service Registries

Information can be retrieved by a service consumer at runtime with the service reg-
istry. As the following methods are inapplicable to REST services, the remainder of
this discussion will only apply to SOAP-based Web services. Storing information about
WSDL locations and endpoint addresses in a file accessible through a proprietary API
at runtime is a retrieval mechanism appropriate for small environments. However, the
format in which the information is stored, such as XML or a character-delimited format,
must be defined, and the location of this file must always be maintained throughout the
enterprise for easy accessibility.

Alternatively, storing the information in a relational database allows for remote access
and query using a standard language, such as SQL, although a proprietary relational
model for this information must still be invented. Other options include leveraging the
JNDI or LDAP to serve the same purpose.

In the early days of Web services, a platform-independent standard describing how to
uniformly store, find, and retrieve business and technical information about services
was developed as the UDDI registry, which offers a query and publish interface. As
a Web service, the UDDI registry allows the API to be described by the WSDL so that
any Web service-capable service consumer can access a UDDI registry by generating a
proxy	from	the	standard	WSDL.	For	accessing	registries	at	runtime,	many	IDEs	such	as	
Eclipse’s	Web	Tools	Platform	have	built-in	support	for	existing	UDDI	registries.

NOTE

Discoverability processing can be delegated into the ESB, where tasks
such as service lookup can be handled centrally and uniformly. The ser-
vice lookup logic does not then clutter the service consumer, which can
instead focus on the business purpose.

7.8 Service Discoverability 73

SUMMARY OF KEY POINTS

• For Web services, JAX-WS provides runtime APIs to set the endpoint
address of a target service. UDDI defines a standardized way for storing
service meta information, which includes access via a Web service-
based API.

• REST services use embedding-related resource links in resource represen-
tations to leverage the hypermedia constraint and lead the client through a
discovery of networked resources.

V e n d o r - N e u t r a l B i g D a t a T r a i n i n g & C e r t i f i c a t i o n

Arcitura
Big Data School

15 Course Modules ● 15 Exams ● 5 Certifications

The Big Data Science Certified Professional
(BDSCP) program from the Arcitura Big Data Science
School is dedicated to excellence in the fields of Big
Data science, analysis, analytics, business intelli-
gence, technology architecture, design and develop-
ment, as well as governance. A collection of courses
establishes a set of vendor-neutral industry certifica-
tions with different areas of specialization. Founded
by best-selling author, Thomas Erl, this curriculum
enables IT professionals to develop real-world Big
Data science proficiency. Because of the vendor-
neutral focus of the course materials, the skills
acquired by attaining certifications are applicable to
any vendor or open-source platform.

Certified Big Data Science Professional
Certified Big Data Scientist
Certified Big Data Engineer
Certified Big Data Architect
Certified Big Data Governance Specialist

V e n d o r - N e u t r a l B i g D a t a T r a i n i n g & C e r t i f i c a t i o n

Arcitura
Big Data School

15 Course Modules ● 15 Exams ● 5 Certifications

The Big Data Science Certified Professional
(BDSCP) program from the Arcitura Big Data Science
School is dedicated to excellence in the fields of Big
Data science, analysis, analytics, business intelli-
gence, technology architecture, design and develop-
ment, as well as governance. A collection of courses
establishes a set of vendor-neutral industry certifica-
tions with different areas of specialization. Founded
by best-selling author, Thomas Erl, this curriculum
enables IT professionals to develop real-world Big
Data science proficiency. Because of the vendor-
neutral focus of the course materials, the skills
acquired by attaining certifications are applicable to
any vendor or open-source platform.

Certified Big Data Science Professional
Certified Big Data Scientist
Certified Big Data Engineer
Certified Big Data Architect
Certified Big Data Governance Specialist

SOA with Java:
Realizing Service-Orientation
with Java Technologies
by Thomas Erl,
Satadru Roy,
Philip Thomas,
Andre Tost

ISBN: 9780133859034

Service Infrastructure: On-Premise & in the Cloud
Next Generation SOA: A Real-World Guide to the Modern Service-Enabled Enterprise
Cloud Computing Design Patterns

SOA with Java:
Realizing Service-Orientation
with Java Technologies
by Thomas Erl,
Satadru Roy,
Philip Thomas,
Andre Tost

ISBN: 9780133859034

Service Infrastructure: On-Premise & in the Cloud
Next Generation SOA: A Real-World Guide to the Modern Service-Enabled Enterprise
Cloud Computing Design Patterns

35_9780137012510_ifc-ibc.indd 4 7/9/12 10:04 PM

21

Professional
CLOUD CERTIFIED

CloudSchool.com

Architect
CLOUD CERTIFIED

CloudSchool.com

Security Specialist
CLOUD CERTIFIED

CloudSchool.com

Governance Specialist
CLOUD CERTIFIED

CloudSchool.com

Technology Professional

CLOUD CERTIFIED

CloudSchool.com

Storage Specialist
CLOUD CERTIFIED

CloudSchool.com

Virtualization Specialist
CLOUD CERTIFIED

CloudSchool.com

Capacity Specialist
CLOUD CERTIFIED

CloudSchool.com

