
Service-Oriented Architecture

00_9780133858587_fm.indd i00_9780133858587_fm.indd i 11/17/16 9:54 AM11/17/16 9:54 AM

00_9780133858587_fm.indd ii00_9780133858587_fm.indd ii 11/17/16 9:54 AM11/17/16 9:54 AM

Service-Oriented Architecture
Analysis and Design for Services and Microservices

Thomas Erl
With contributions by Paulo Merson and Roger Stoffers

BOSTON • COLUMBUS • INDIANAPOLIS • NEW YORK • SAN FRANCISCO

AMSTERDAM • CAPE TOWN • DUBAI • LONDON • MADRID • MILAN • MUNICH

PARIS • MONTREAL • TORONTO • DELHI • MEXICO CITY • SAO PAULO

SIDNEY • HONG KONG • SEOUL • SINGAPORE • TAIPEI • TOKYO

00_9780133858587_fm.indd iii00_9780133858587_fm.indd iii 11/17/16 9:54 AM11/17/16 9:54 AM

Contents at a Glance
CHAPTER 1: Introduction .1

CHAPTER 2: Case Study Backgrounds .13

PART I: FUNDAMENTALS
CHAPTER 3: Understanding Service-Orientation. .19

CHAPTER 4: Understanding SOA. .59

CHAPTER 5: Understanding Layers with Services and Microservices 111

PART II: SERVICE-ORIENTED ANALYSIS AND DESIGN
CHAPTER 6: Analysis and Modeling with Web Services and Microservices139

CHAPTER 7: Analysis and Modeling with REST Services and Microservices159

CHAPTER 8: Service API and Contract Design with Web Services191

CHAPTER 9: Service API and Contract Design with REST Services
and Microservices .219

CHAPTER 10: Service API and Contract Versioning with Web Services and
REST Services . 263

PART III: APPENDICES
APPENDIX A: Service-Orientation Principles Reference . 289

APPENDIX B: REST Constraints Reference . 305

APPENDIX C: SOA Design Patterns Reference .317

APPENDIX D: The Annotated SOA Manifesto. 367

About the Author . 383

Index . 384

00_9780133858587_fm.indd vii00_9780133858587_fm.indd vii 11/17/16 9:54 AM11/17/16 9:54 AM

Chapter 6

Analysis and Modeling with
Web Services and Microservices
6.1 Web Service Modeling Process

08_9780133858587_ch06.indd 13908_9780133858587_ch06.indd 139 11/17/16 9:56 AM11/17/16 9:56 AM

This chapter provides a detailed step-by-step process for modeling Web service
candidates.

6.1 Web Service Modeling Process

A service modeling process can essentially be viewed as an exercise in organizing the
information we gathered in Steps 1 and 2 of the parent service-oriented analysis pro-
cess that was described in Chapter 4. Figure 6.1 provides a generic service modeling
process suitable for Web services that can be further customized. This chapter follows
this generic service modeling process by describing each step and further providing
case study examples.

Define
Business

Requirements

Step 1

Step 2

Identify
Automation

Systems

Decompose
Business
Process

Filter Out
Unsuitable

Actions

Model
Candidate
Services

Step 3

Define
Entity Service
Candidates

Step 4

Identify
Process-Specific

Logic

Step 5

Step 6

Apply
Service-

Orientation

Identity Service
Composition
Candidates

Step 7

Step 8

Define
Utility Service
Candidates

Step 9

Step 10

Define
Microservice
Candidates

Apply
Service-

Orientation

Step 11

Revise Service
Composition
Candidates

Step 12

Revise Capability
Candidate
Grouping

Analyze
Processing

Requirements

Figure 6.1
A sample service modeling process for Web services .

08_9780133858587_ch06.indd 14008_9780133858587_ch06.indd 140 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 141

CASE STUDY EXAMPLE

TLS outsources a number of its employees on a contract basis to perform various
types of specialized maintenance jobs. When these employees fi ll out their weekly
timesheets, they are required to identify what portions of their time are spent at
customer sites. Currently, the amount of time for which a customer is billed is deter-
mined by an A/R clerk who manually enters hours from an appointment schedule
that is published prior to the submission of timesheets.

Discrepancies arise when employee timesheet entries do not match the hours billed
on customer invoices. To address this problem and streamline the overall process,
TLS decides to integrate its third-party time tracking system with its large, distrib-
uted accounting solution.

The resulting Timesheet Submission busi-
ness process is shown in Figure 6.2. Essen-
tially, every timesheet that TLS receives from
outsourced employees needs to undergo a
series of verifi cation steps. If the timesheet is
verifi ed successfully, the process ends and the
timesheet is accepted. Any timesheet that fails
verifi cation is submitted to a separate rejection
step prior to the process ending.

Start

Stop

Receive
PO

Validate
PO

Transform
PO

Send
Notification

PO
valid?

Import
PO

Send PO
to Queue

no

yes

Figure 6.2
The TLS Timesheet Submission business process.

08_9780133858587_ch06.indd 14108_9780133858587_ch06.indd 141 11/17/16 9:56 AM11/17/16 9:56 AM

142 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 1: Decompose the Business Process (into Granular Actions)

We begin by taking the documented business process and breaking it down into a series
of granular process steps. The business process workfl ow logic needs to be decomposed
into its most granular representation of processing steps, which may differ from the
level of granularity at which the process steps were originally documented.

CASE STUDY EXAMPLE

Here is a breakdown of the current business process steps:

 1. Receive Timesheet

 2. Verify Timesheet

 3. If Timesheet is Verifi ed, Accept Timesheet Submission and End Process

 4. Reject Timesheet Submission

Although it only consists of four steps at this point, there is more to this business
process. The details are revealed as the TLS team decomposes the process logic. They
begin with the Receive Timesheet step, which is split into two smaller steps:

 1a. Receive Physical Timesheet Document

 1b. Initiate Timesheet Submission

The Verify Timesheet step is actually a subprocess in its own right and can therefore
be broken down into the following more granular steps:

 2a. Compare Hours Recorded on Timesheet to Hours Billed to Clients

 2b. Confi rm That Authorization Was Given for Any Recorded Overtime Hours

 2c. Confi rm That Hours Recorded for Any Particular Project Do Not Exceed a
Pre-Defi ned Limit for That Project

 2d. Confi rm That Total Hours Recorded for One Week Do Not Exceed a
Pre-Defi ned Maximum for That Worker

Upon subsequent analysis, TLS further discovers that the Reject Timesheet Submission
process step can be decomposed into the following granular steps:

 4a. Update the Worker’s Profi le Record to Keep Track of Rejected Timesheets

 4b. Issue a Timesheet Rejection Notifi cation Message to the Worker

 4c. Issue a Notifi cation to the Worker’s Manager

08_9780133858587_ch06.indd 14208_9780133858587_ch06.indd 142 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 143

Having drilled down the original process
steps, TLS now has a larger amount of process
steps. It organizes these steps into an expanded
business process workfl ow (Figure 6.3):

 • Receive Timesheet

 • Compare Hours Recorded on Timesheet
to Hours Billed to Clients

If Hours Do Not Match, Reject Timesheet
Submission

 • Confi rm That Authorization Was Given
for Any Recorded Overtime Hours

 • If Authorization Confi rmation Fails,
Reject Timesheet Submission

 • Confi rm That Hours Recorded for Any
Particular Project Do Not Exceed a
Pre-Defi ned Limit for That Project

 • Confi rm That Total Hours Recorded for
One Week Do Not Exceed a
Pre-Defi ned Maximum for That Worker

 • If Hours Recorded Confi rmation Fails,
Reject Timesheet Submission

 • Reject Timesheet Submission

 • Generate a Message Explaining the
Reasons for the Rejection

 • Issue a Timesheet Rejection Notifi cation
Message to the Worker

Start

Stop

Receive
Timesheet

Compare
to Billed Hours

Send Message
to Manager

Send Message
to Worker

Confirm
Authorization

Confirm
Hours Limit

yes

hours
match?

no

yes

no

yes

no

Update Worker
Profile

Figure 6.3
The revised TLS Timesheet Submission business process.

08_9780133858587_ch06.indd 14308_9780133858587_ch06.indd 143 11/17/16 9:56 AM11/17/16 9:56 AM

144 Chapter 6: Analysis and Modeling with Web Services and Microservices

 • Issue a Notifi cation to the Worker’s Manager

 • If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

Finally, TLS further simplifi es the business process logic into the following set of
granular actions:

 • Receive Timesheet

 • Initiate Timesheet Submission

 • Get Recorded Hours for Customer and Date Range

 • Get Billed Hours for Customer and Date Range

 • Compare Recorded Hours with Billed Hours

 • If Hours Do Not Match, Reject Timesheet Submission

 • Get Overtime Hours for Date Range

 • Get Authorization

 • Confi rm Authorization

 • If Authorization Confi rmation Fails, Reject Timesheet Submission

 • Get Weekly Hours Limit

 • Compare Weekly Hours Limit with Recorded Hours

 • If Hours Recorded Confi rmation Fails, Reject Timesheet Submission

 • Update Employee History

 • Send Message to Employee

 • Send Message to Manager

 • If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

Step 2: Filter Out Unsuitable Actions

Some steps within a business process can be easily identifi ed as not belonging to the
potential logic that should be encapsulated by a service candidate. These can include
manual process steps that cannot or should not be automated and process steps

08_9780133858587_ch06.indd 14408_9780133858587_ch06.indd 144 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 145

performed by existing legacy logic for which service candidate encapsulation is not an
option. By fi ltering out these parts, we are left with the processing steps most relevant
to our service modeling process.

CASE STUDY EXAMPLE

After reviewing each of the business process steps, those that either cannot or do
not belong in a service-oriented solution are removed. The following list revisits the
decomposed actions. The fi rst action is crossed out because it is performed manually
by an accounting clerk.

 • Receive Timesheet

 • Initiate Timesheet Submission

 • Get Recorded Hours for Customer and Date Range

 • Get Billed Hours for Customer and Date Range

 • Compare Recorded Hours with Billed Hours

 • If Hours Do Not Match, Reject Timesheet Submission

 • Get Overtime Hours for Date Range

 • Get Authorization

 • Confi rm Authorization

 • If Authorization Confi rmation Fails, Reject Timesheet Submission

 • Get Weekly Hours Limit

 • Compare Weekly Hours Limit with Recorded Hours

 • If Hours Recorded Confi rmation Fails, Reject Timesheet Submission

 • Update Employee History

 • Send Message to Employee

 • Send Message to Manager

 • If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

Each of the remaining actions is considered a service capability candidate.

08_9780133858587_ch06.indd 14508_9780133858587_ch06.indd 145 11/17/16 9:56 AM11/17/16 9:56 AM

146 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 3: Define Entity Service Candidates

Review the processing steps that remain and determine one or more logical contexts
with which these steps can be grouped. Each context represents a service candidate.
The contexts you end up with will depend on the types of business services you have
chosen to build. For example, task services will require a context specifi c to the process,
whereas entity services will introduce the need to group processing steps according to
their relation to previously defi ned entities. An SOA can also consist of a combination
of these business service types.

It is important that you do not concern yourself with how many steps belong to each
group. The primary purpose of this exercise is to establish the required set of contexts.

Equipping entity service candidates with additional capability candidates that facili-
tate future reuse is also encouraged. Therefore, the scope of this step can be expanded
to include an analysis of additional service capability candidates not required by the
current business process, but added to round out entity services with a complete set of
reusable operations.

CASE STUDY EXAMPLE

TLS business analysts support the service modeling effort by producing an entity
model relevant to the Timesheet Submission business process logic (Figure 6.4).

Invoice

Customer
Hours Billed
Billing Period

1

1

1*

*
*

Timesheet

Employee
Date
Recorded Hours
Overtime Hours
Authorization ID
Customer

E-mail Address
Weekly Hours Limit

Employee

Employee History

Employee
Comment

Figure 6.4
A TLS entity model displaying business
entities pertinent to the Timesheet
Submission business process.

08_9780133858587_ch06.indd 14608_9780133858587_ch06.indd 146 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 147

The TLS team studies this model, along with the list of granular service capability
candidates identifi ed during the previous analysis step. They subsequently identify
the service capability candidates considered agnostic. All those classifi ed as non-
agnostic are bolded, as follows:

 • Initiate Timesheet Submission

 • Get Recorded Hours for Customer and Date Range

 • Get Billed Hours for Customer and Date Range

 • Compare Recorded Hours with Billed Hours

 • If Hours Do Not Match, Reject Timesheet Submission

 • Get Overtime Hours for Date Range

 • Get Authorization

 • Confi rm Authorization

 • If Authorization Confi rmation Fails, Reject Timesheet Submission

 • Get Weekly Hours Limit

 • Compare Weekly Hours Limit with Recorded Hours

 • If Hours Recorded Confi rmation Fails, Reject Timesheet Submission

 • Update Employee History

 • Send Message to Employee

 • Send Message to Manager

 • If Timesheet Is Verifi ed, Accept Timesheet Submission and End Process

First, the Timesheet entity is reviewed. It is decided that this entity warrants a cor-
responding entity service candidate simply called “Timesheet.” Upon analysis of its
attributes, TLS further determines that the following service capability candidates
should be grouped with the entity service candidate:

 • Get Recorded Hours for Customer and Date Range

 • Get Overtime Hours for Date Range

 • Get Authorization

08_9780133858587_ch06.indd 14708_9780133858587_ch06.indd 147 11/17/16 9:56 AM11/17/16 9:56 AM

148 Chapter 6: Analysis and Modeling with Web Services and Microservices

However, upon subsequent analysis, it is determined
that the fi rst two capability candidates could be made
more reusable by removing the requirement that a date
range be the only query criteria. Although this particu-
lar business process will always provide a date range,
business analysts point out that other processes will
want to request recorded or overtime hours based on
other parameters. The result is a revised set of capability
candidates, as shown in Figure 6.5.

Analysts then take a look at the Invoice entity. They
again agree that this entity deserves representation as
a standalone entity service candidate. They name this
service “Invoice” and assign it the following capability
candidate:

 • Get Billed Hours for Customer and Date Range

When the service-orientation principle of Service Reus-
ability is again considered, the analysts decide to expand
the scope of this service candidate by altering the func-
tion of the chosen capability candidate and then by
adding a new one, as shown in Figure 6.6. Now service
consumers can retrieve invoice-related customer infor-
mation and billed hours information separately.

The Employee and Employee History entities are
reviewed next. Because they are closely related to each
other, it is decided that they can be jointly represented by
a single entity service candidate called “Employee.” Two
service capability candidates are assigned, resulting in
the service candidate defi nition displayed in Figure 6.7.

The TLS team considers also adding a Send Notifi -
cation service capability candidate to the Employee
service candidate, but then determines that this func-
tionality is best separated into a utility service candidate.

Timesheet

Get Recorded
Hours for Customer
Get Overtime Hours
Get Authorization

Figure 6.5
The Timesheet service candidate.

Invoice

Get Customers
Get Billed Hours

Figure 6.6
The Invoice service candidate.

Employee

Get Weekly Hours
Limit
Update Employee
History

Figure 6.7
The Employee service candidate.

08_9780133858587_ch06.indd 14808_9780133858587_ch06.indd 148 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 149

As a result, the remaining two actions are put aside for now until utility services are
defi ned, later in this process:

 • Send Message to Employee

 • Send Message to Manager

Step 4: Identify Process-Specific Logic

Any parts of the business process logic remaining after we complete Step 3 will need
to be classifi ed as non-agnostic or specifi c to the business process. Common types of
actions that fall into this category include business rules, conditional logic, exception
logic, and the sequence logic used to execute the individual business process actions.

Note that not all non-agnostic actions necessarily become service capability candidates.
Many process-specifi c actions represent decision logic and other forms of processing
that are executed within the service logic.

NOTE

There may be sufficient information about the identified non-agnostic logic to determine
whether any part of this logic may be suitable for encapsulation by one or more microser-
vices. In this case, microservice candidates can be defined as part of this step together with
task service candidates. However, it is recommended that you wait until Step 9 to formally
define the necessary microservice(s) for this solution because upcoming service modeling
steps can identify additional non-agnostic logic and can further assist with the definition of
solution implementation and processing requirements.

CASE STUDY EXAMPLE

The following actions are considered non-agnostic because they are specifi c to the
Timesheet Submission business process:

 • Initiate Timesheet Submission

 • Compare Recorded Hours with Billed Hours

 • If Hours Do Not Match, Reject Timesheet Submission

08_9780133858587_ch06.indd 14908_9780133858587_ch06.indd 149 11/17/16 9:56 AM11/17/16 9:56 AM

150 Chapter 6: Analysis and Modeling with Web Services and Microservices

 • Confi rm Authorization

 • If Authorization Confi rmation Fails, Reject
Timesheet Submission

 • Compare Weekly Hours Limit with Recorded
Hours

 • If Hours Recorded Confi rmation Fails, Reject
Timesheet Submission

 • If Timesheet Is Verifi ed, Accept Timesheet
Submission and End Process

The Initiate Timesheet Submission action forms the
basis of a service capability candidate, as explained in
the upcoming Timesheet Submission task service can-
didate description. The remaining actions are bolded to
indicate that they represent logic that is carried out within the Timesheet Submission
task service, upon execution of the Initiate Timesheet Submission action, which is
renamed to the Start service capability candidate (Figure 6.8).

Timesheet
Submission

Start

Figure 6.8
The Timesheet Submission
service candidate with a single
service capability that launches
the automation of the Timesheet
Submission business process.

Step 5: Apply Service-Orientation

This step gives us a chance to make adjustments and apply key service-orientation prin-
ciples. Depending on the insight we may have as to the specifi c nature of logic that will
be required within a given service candidate, we may have an opportunity to further
augment the scope and structure of service candidates. Principles such as Service Loose
Coupling (293), Service Abstraction (294), and Service Autonomy (297) may provide
suitable considerations at this stage.

NOTE

The application of the Service Autonomy (297) principle in particular may raise consid-
erations that could introduce the need for some of the identified logic to be encapsulated
within microservices. In this case, microservice candidates can be defined as part of this
step and will be subject to further review during Step 9, when microservices are formally
defined.

08_9780133858587_ch06.indd 15008_9780133858587_ch06.indd 150 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 151

Step 6: Identify Service Composition Candidates

Identify a set of the most common scenarios that can take place within the boundaries
of the business process. For each scenario, follow the required processing steps as they
exist now.

This exercise accomplishes the following:

 • Provides insight as to how appropriate the grouping of your process steps is

 • Demonstrates the potential relationship between task and entity service layers

 • Identifi es potential service compositions

 • Highlights any missing workfl ow logic or processing steps

Ensure that, as part of your chosen scenarios, you include failure conditions that involve
exception handling logic. Note also that any service layers you establish at this point are
still preliminary and still subject to revisions during the design process.

CASE STUDY EXAMPLE

Figure 6.9 displays a preliminary service composition candidate comprised of task
and entity service candidates. This composition model is the result of various compo-
sition scenarios mapped out by the TLS team to explore different success and failure
conditions when carrying out the automation of the Timesheet Submission process.

As a result of mapping different service activities within the boundaries of this ser-
vice composition candidate, TLS feels confi dent that no further non-agnostic process
logic is missing from what it has identifi ed so far.

Timesheet
Submission

Employee Timesheet Invoice

Figure 6.9
A look at the service composition
candidate hierarchy that is formed as
various service interaction scenarios
are explored during this stage.

08_9780133858587_ch06.indd 15108_9780133858587_ch06.indd 151 11/17/16 9:56 AM11/17/16 9:56 AM

152 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 7: Analyze Processing Requirements

By the end of Step 6, you will have created a business-centric view of your services layer.
This view could very well include both utility and business service candidates, but the
focus so far has been on representing business process logic.

This and the upcoming steps ask us to identify and dissect the underlying process-
ing and implementation requirements of service candidates. We do this to abstract any
further technology-centric service logic that may warrant the introduction of microser-
vices or that may add to the utility service layer. To accomplish this, each processing
step identifi ed so far is required to undergo a mini-analysis.

Specifi cally, what we need to determine is:

 • What underlying processing logic needs to be executed to process the action
described by a given service capability candidate.

 • Whether the required processing logic already exists or whether it needs to be
newly developed.

 • What resources external to the service boundary the processing logic may need
to access—for example, shared databases, repositories, directories, legacy
systems, etc.

 • Whether any of the identifi ed processing logic has specialized or critical perfor-
mance and/or reliability requirements.

 • Whether the identifi ed processing logic has any specialized or critical implemen-
tation and/or environmental requirements.

Note that any information gathered during Step 2 of the parent service-oriented analy-
sis process covered in Chapter 4 will be referenced at this point.

CASE STUDY EXAMPLE

Upon assessing the processing requirements for the identifi ed service candidates
and the overall business process logic, the TLS team can confi rm that the Send Mes-
sage to Employee and Send Message to Manager actions will need to be encapsulated
as part of a utility service layer. Based on the information available about the known
processing requirements and the eventual service implementation environment,
they cannot identify any further utility-centric logic.

08_9780133858587_ch06.indd 15208_9780133858587_ch06.indd 152 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 153

During the review of the non-agnostic process logic that is currently within the scope
of the Timesheet Submission task service, architects realize that a discrepancy exists
in processing requirements. In particular, the Confi rm Authorization action encom-
passes logic that is required to access a proprietary clearance repository. This inter-
action has signifi cantly greater SLA requirements than the rest of the non-agnostic
process logic in relation to performance and failover.

Keeping this logic grouped with the other logic that is part of the Timesheet Submis-
sion task service could risk this logic not executing as per its required metrics. There-
fore, it is suggested that it be separated into one or more microservice candidates that
would eventually benefi t from the type of highly autonomous implementation that
could guarantee the required performance and failover demands.

Step 8: Define Utility Service Candidates

In this step we break down each unit of agnostic processing logic into a series of granu-
lar actions. We need to be explicit about the labeling of these actions so that they refer-
ence the function they are performing. Ideally, we would not reference the business
process step for which a given function is being identifi ed.

Group these processing steps according to a pre-defi ned context. With utility service
candidates, the primary context is a logical relationship between capability candidates.
This relationship can be based on any number of factors, including:

 • Association with a specifi c legacy system

 • Association with one or more solution components

 • Logical grouping according to type of function

Various other issues are factored in after service candidates are subjected to the service-
oriented design process. For now, this grouping establishes a preliminary utility service
layer.

08_9780133858587_ch06.indd 15308_9780133858587_ch06.indd 153 11/17/16 9:56 AM11/17/16 9:56 AM

154 Chapter 6: Analysis and Modeling with Web Services and Microservices

CASE STUDY EXAMPLE

Subsequent to assessing processing requirements for
logic that may qualify for the utility service model, the
TLS team revisits the Send Message to Employee and
Send Message to Manager actions and groups them into
a new reusable utility service, simply called Notifi cation.

To make the service candidate more reusable, the two
capability candidates are consolidated into one as shown
in Figure 6.10.

Figure 6.10
The Notification service candidate.

Notification

Send Message

NOTE

Modeling utility service candidates is notoriously more difficult than entity service can-
didates. Unlike entity services where we base functional contexts and boundaries upon
already-documented enterprise business models and specifications (such as taxonomies,
ontologies, entity relationships, and so on), there are usually no such models for application
logic. Therefore, it is common for the functional scope and context of utility service candi-
dates to be continually revised during iterations of the service inventory analysis cycle.

Step 9: Define Microservice Candidates

We now turn our attention to the previously identifi ed non-agnostic processing logic to
determine whether any unit of this logic may qualify for encapsulation by a separate
microservice. As discussed in Chapter 4, the microservice model can introduce a highly
independent and autonomous service implementation architecture that can be suitable
for units of logic with particular processing demands.

Typical considerations can include:

 • Increased autonomy requirements

 • Specifi c runtime performance requirements

08_9780133858587_ch06.indd 15408_9780133858587_ch06.indd 154 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 155

 • Specifi c runtime reliability or failover requirements

 • Specifi c service versioning and deployment requirements

It is important to note that, due to their specialized implementation needs, the use of
SOAP-based Web services may not be suitable for microservices, even when they are
identifi ed as part of a Web services-centric service modeling process. SOA architects are
given the option to build microservices using alternative implementation technologies,
which may introduce disparate or proprietary communication protocols.

SOA PATTERNS

The Dual Protocols [339] pattern provides a standardized manner of support-
ing primary and secondary communication protocols with the same service
inventory.

CASE STUDY EXAMPLE

The Confi rm Authorization action that is part of the
Timesheet Submission task service candidate logic is
separated to form the basis of the Confi rm Authorization
microservice candidate (Figure 6.11), a REST service that
executes this logic via a Confi rm capability candidate.

For more information on service modeling steps distinct
to REST services, see Chapter 7.

Figure 6.11
The Confirm Authorization service
candidate.

Cofirm
Autorization

Confirm

Step 10: Apply Service-Orientation

This step is a repeat of Step 7, provided here specifi cally for any new utility service can-
didates that may have emerged from the completion of Steps 8 and 9.

08_9780133858587_ch06.indd 15508_9780133858587_ch06.indd 155 11/17/16 9:56 AM11/17/16 9:56 AM

156 Chapter 6: Analysis and Modeling with Web Services and Microservices

Step 11: Revise Service Composition Candidates

Revisit the original scenarios you identifi ed in Step 6 and run through them again, this
time incorporating the new utility service and capability candidates as well. This will
result in the mapping of elaborate activities that bring expanded service compositions
to life. Be sure to keep track of how business service candidates map to underlying util-
ity service candidates during this exercise.

CASE STUDY EXAMPLE

With the introduction of the Notifi cation utility service and the Verify Timesheet
microservice, the complexion of the Timesheet Submission composition hierarchy
changes noticeably, as illustrated in Figure 6.12.

Employee Timesheet Invoice

Confirm
Authorization

task
service
layer

entity
service
layer

micro
service
layer

Notification
utility

service
layer

Timesheet
Submission
Timesheet
Submission

Employee Timesheet Invoice

Confirm
Authorization

Notification

Figure 6.12
The revised service composition candidate incorporating the new utility service and microservice.

08_9780133858587_ch06.indd 15608_9780133858587_ch06.indd 156 11/17/16 9:56 AM11/17/16 9:56 AM

6.1 Web Service Modeling Process 157

Step 12: Revise Capability Candidate Grouping

Performing the mapping of the activity scenarios from Step 11 will usually result in
changes to the grouping and defi nition of service capability candidates. It may also
highlight any omissions in any further required processing steps, resulting in the addi-
tion of new service capability candidates and possibly even new service candidates.

NOTE

This process description assumes that this is the first iteration through the service modeling
process. During subsequent iterations, additional steps need to be incorporated to check for
the existence of relevant service candidates and service capability candidates.

08_9780133858587_ch06.indd 15708_9780133858587_ch06.indd 157 11/17/16 9:56 AM11/17/16 9:56 AM

Thomas Erl is a best-selling IT author, the series editor of the Prentice Hall
Service Technology Series from Thomas Erl, and the editor of the
Service Technology Magazine. As CEO of Arcitura Education Inc.,
Thomas has led the development of curricula for the internationally
recognized Big Data Science Certified Professional (BDSCP),
Cloud Certified Professional (CCP), and SOA Certified
Professional (SOACP) accreditation programs, which
have established a series of formal, vendor-neutral
industry certifications. Thomas has toured over 20
countries as a speaker and instructor. Over 100
articles and interviews by Thomas have been
published in numerous publications, including
the Wall Street Journal and CIO Magazine.

The Prentice Hall Service Technology Series from Thomas Erl aims to provide the IT industry with a consistent
level of unbiased, practical, and comprehensive guidance and instruction in the areas of IT science and
service technology application and innovation. Each title in this book series is authored in relation to other
titles so as to establish a library of complementary knowledge. Although the series covers a broad spectrum
of service technology-related topics, each title is authored in compliance with common language,
vocabulary, and illustration conventions so as to enable readers to continually explore cross-topic
research and education.

19_9780133858587_index.indd 39419_9780133858587_index.indd 394 11/17/16 9:58 AM11/17/16 9:58 AM

Cloud Computing:
Concepts, Technology
& Architecture
by T. Erl, Z. Mahmood,
R. Puttini

ISBN: 9780133387520
Hardcover, 528 pages

SOA with Java: Realizing
Service-Orientation with
Java Technologies
by T. Erl, S. Roy, P. Thomas,
A. Tost

ISBN: 9780133859034
Hardcover, 592 pages

Next Generation SOA:
A Concise Introduction
to Service Technology &
Service-Orientation
by T. Erl, C. Gee, J. Kress,
B. Maier, H. Normann, P. Raj,
L. Shuster, B. Trops,
C. Utschig-Utschig, P. Wik,
T. Winterberg

ISBN: 9780133859041
Paperback, 208 pages

Big Data Fundamentals:
Concepts, Drivers
& Techniques
by P. Buhler, T. Erl, W. Khattak

ISBN: 9780134291079
Paperback, 218 pages

Cloud Computing
Design Patterns
by T. Erl, R. Cope,
A. Naserpour

ISBN: 9780133858563
Hardcover, 528 pages

Service-Oriented Architecture:
A Field Guide to Integrating
XML and Web Services
by T. Erl

ISBN: 0131428985
Paperback, 534 pages

Service-Oriented
Architecture: Analysis & Design
for Services and Microservices
(Second Edition)
by T. Erl

ISBN: 0133858588
Paperback, ~ 300 pages

SOA Principles of
Service Design
by T. Erl

ISBN: 0132344823
Hardcover, 573 pages

Web Service Contract
Design & Versioning for SOA
by T. Erl, A. Karmarkar,
P. Walmsley, H. Haas,
U. Yalcinalp, C. Liu,
D. Orchard, A. Tost, J. Pasley

ISBN: 013613517X
Hardcover, 826 pages

SOA Design Patterns
by T. Erl

ISBN: 0136135161
Hardcover, 865 pages

SOA with .NET & Windows
Azure: Realizing Service-
Orientation with the
Microsoft Platform
by D. Chou, J. deVadoss,
T. Erl, N. Gandhi,
H. Kommalapati, B. Loesgen,
C. Schittko, H. Wilhelmsen,
M. Williams

ISBN: 0131582313
Hardcover, 893 pages

SOA with REST: Principles,
Patterns & Constraints for
Building Enterprise Solutions
with REST
by R. Balasubramanian,
B. Carlyle, T. Erl, C. Pautasso

ISBN: 0137012519
Hardcover, 577 pages

SOA Governance:
Governing Shared Services
On-Premise & in the Cloud
by S. Bennett, T. Erl, C. Gee,
R. Laird, A. Manes,
R. Schneider, L. Shuster,
A. Tost, C. Venable

ISBN: 0138156751
Hardcover, 675 pages

SOA with REST: Principleplell

SOA Governance: SOA ith NET & Wi d

SOA D i P tt

W b S i C t t

The text books in this book series are official parts of
Arcitura training and certification programs. All exams
 that correspond to associated courses are available

at Pearson VUE testing centers and via
Pearson VUE Online Proctoring. Visit

www.pearsonvue.com/arcitura.

19_9780133858587_index.indd 39519_9780133858587_index.indd 395 11/17/16 9:58 AM11/17/16 9:58 AM

The Certified Cloud Professional (CCP) program, provided by
CloudSchool.com, establishes a series of vendor-neutral
industry certifications dedicated to areas of specialization in
the field of cloud computing. Also founded by author Thomas
Erl, this program allows IT professionals to learn and become
accredited in common and specialized topic areas within the
field of cloud computing.

The Cloud Certified Professional curriculum is comprised of
21 courses and labs, each of which has a corresponding
exam. Private and public training workshops can be provided
throughout the world by certified Trainers. Self-study kits are
further available for remote, self-paced study in support of
instructor led workshops.

Professional
CLOUD CERTIFIED

CloudSchool.com

Architect
CLOUD CERTIFIED

CloudSchool.com

Security Specialist
CLOUD CERTIFIED

CloudSchool.com

Governance Specialist
CLOUD CERTIFIED

CloudSchool.com

Technology Professional

CLOUD CERTIFIED

CloudSchool.com

Storage Specialist
CLOUD CERTIFIED

CloudSchool.com

Virtualization Specialist
CLOUD CERTIFIED

CloudSchool.com

Capacity Specialist
CLOUD CERTIFIED

CloudSchool.com

All Arcitura exams are available at Pearson VUE testing
centers and via Pearson VUE Online Proctoring

19_9780133858587_index.indd 39619_9780133858587_index.indd 396 11/17/16 9:58 AM11/17/16 9:58 AM

	00fm
	01 ch1
	02 ch2
	03 pt1
	04 ch3
	05 ch4
	06 ch5
	07 pt 2
	08 ch6
	09 ch7
	10 ch8
	11 ch9
	12 ch10
	13 pt 3
	14 xa
	15 xb
	16 xc
	17 xd
	18 aboiut
	19 index

