
SOA with .NET
& Windows Azure™
Realizing Service-Orientation with the Microsoft Platform

Edited and Co-Authored by Thomas Erl,
World’s Top-Selling SOA Author

Forewords by
S. Somasegar
David Chappell

David Chou, John deVadoss, Nitin Gandhi, Hanu Kommapalati,
Brian Loesgen, Christoph Shittko, Herbjorn Wilhelmsen, Mickie Williams

With contributions from Scott Golightly, Daryl Hogan, Jeff King, Scott Seely
With additional contributions by members of the Microsoft Windows Azure and AppFabric teams

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

ErlSoftware Engineering/Microsoft Programming

“Microsoft’s diverse product line has long supported
the service-oriented enterprise, but putting it all
together into a cohesive whole can be daunting.
From more established products, like Windows
Communication Foundation, Windows Workflow
Foundation, Microsoft Office SharePoint Server, and
BizTalk Server, to newer offerings like Windows Azure
and AppFabric, the experts assembled here expose
the sweet spots for each technology, talk through
the high-level trade-offs, and offer a roadmap to a
unified Microsoft SOA story.”

—Kevin P. Davis, Ph.D., Software Architect

“This book excels in giving hands-on and in-depth
expertise on the SOA architecture style with the
.NET framework and the Azure cloud platform. It’s a
practical guide for developers, architects, and SOA
implementers. A must read!”

—Ricardo P. Schluter, ICT Architect,
Parnassia Bavo Group

“While the industry overall may have hyped ‘the
cloud’ to the level it often seems to cure world
hunger, SOA with .NET and Windows Azure helps cut
through the questions and hype and more clearly
discusses the benefits and practical techniques for
putting it to work in the real world. This book helps
you understand the benefits associated with SOA
and cloud computing, and also the techniques for
connecting your current IT assets with new composite
applications and data running in the cloud. This
book will help you understand modern middleware
technologies and harness the benefits of the cloud
both on and off premises.”

—Burley Kawasaki, Director of Product Management,
Microsoft

“The authors have a combined SOA and .NET
experience of several decades—which becomes
obvious when reading this book. They don’t just
lead you down one path with a single descriptive
solution. Instead, the sometimes nasty trade-offs
that architects face in their design decisions are
addressed. These are then mapped to the Microsoft
.NET platform with clear code examples. A very
refreshing look at this major contender in the
SOA space and a definite must for the .NET SOA
practitioner!”

—Dr. Thomas Rischbeck, IT Architect, Innovation
Process Technology

“In order to evolve as a software craftsman one must
read excellent books that will help you grow and
evolve in your profession. One of those books that
every software craftsmen interested in good design
and best practices should read is SOA with .NET
and Windows Azure. With this book, you will learn
which design patterns will provide the best solution
for the kinds of software design problems you, as
a developer or designer, face every day. This book
has everything that software architects, software
designers, and programmers need to know when
building great quality software with Microsoft
technologies.

“This will undoubtedly be one of those books that you
reference repeatedly when starting new SOA projects.
There is plenty of information that even those not
working with typical service-oriented architecture
will find very useful. With plenty of real-life examples
(code, design, and modeling), readers see in a
practical manner how they could use SOA patterns
to solve everyday software problems and be more
productive. SOA with .NET and Windows Azure will
fit in my top three books and will definitely be one of
those that I will use in my everyday work.”

—Arman Kurtagic, Consultant at Omegapoint AB

SOA with .NET
& Windows Azure

SOA with .NET
& Windows Azure

SOA with .NET and Windows Azure™

Realizing Service-Orientation with the Microsoft Platform

SO
A

 w
ith .N

ET
&

 W
ind

o
w

s A
zu

re
™

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

ISBN-13:
ISBN-10:

978-0-13-158231-6
0-13-158231-3

9 7 8 0 1 3 1 5 8 2 3 1 6

5 5 4 9 9

$54.99 U.S. $65.99 CANADA

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

“Explaining the intersection of these two worlds—service-orientation and
.NET technologies—is exactly what this book does. Its team of specialist
authors provides a concrete, usable guide to this combination, ranging
from the fundamentals of service-orientation to the more rarified air
of .NET services in the cloud and beyond. If you’re creating service-
oriented software on the Microsoft platform—that is, if you’re a
serious .NET developer—mastering these ideas is a must.”

From the Foreword by David Chappell, Chappell & Associates

informit.com/soa
soabooks.com
soaschool.com
soasystems.com
soapatterns.com

About the Web Sites

This book series is further supported by a
series of resources sites, including:

• www.soabooks.com
• www.soaspecs.com
• www.soamag.com
• www.serviceorientation.com
• www.soapatterns.org
• www.soaprinciples.com
• www.whatissoa.com

Topic Areas

This book covers the following primary topics:

• Microsoft Service Technologies
• Microsoft Enterprise Technologies
• On-Premise & Cloud-Based Service Topics
• Industry Service Technologies & Mediums
• Service-Oriented Technology Architectural Models
• Service-Orientation Design Paradigm
• Service-Orientation Design Principles
• SOA Design Patterns

The Authoritative Guide to Building Service-Oriented Solutions
with Microsoft .NET Technologies and the Windows Azure
Cloud Computing Platform
In SOA with .NET and Windows Azure, top Microsoft technology experts team up with
Thomas Erl to explore service-oriented computing with Microsoft’s latest .NET service
technologies and Windows Azure innovations.

The authors provide comprehensive documentation of on-premise and cloud-based
modern service technology advancements within the Microsoft platform and further
show how these technologies have increased the potential for applying and realizing
service-orientation practices and goals.

Specifically, the book delves into Microsoft enterprise technologies, such as:
l	 Windows Communication Foundation (WCF)
l	 Windows Azure
l	 Windows Workflow Foundation (WF)
l	 Windows Azure AppFabric
l	 BizTalk Server
l	 Windows Presentation Foundation (WPF)

...as well as industry service mediums, including WS-* and REST, and many related
service industry standards and technologies.

The book steps through common SOA design patterns and service-orientation principles,
along with numerous code-level examples that further detail various technology
architectures and implementations.

Foreword by S. Somasegar
Foreword by David Chappell
Chapter 1: Introduction
Chapter 2: Case Study Background

Part I: Fundamentals

Chapter 3: SOA Fundamentals
Chapter 4: A Brief History of Legacy .NET

Distributed Technologies
Chapter 5: WCF Services
Chapter 6: WCF Extensions
Chapter 7: .NET Enterprise Services Technologies
Chapter 8: Cloud Services with Windows Azure

Part II: Services and Service Composition

Chapter 9: Service-Orientation with .NET
Part I: Service Contracts and Interoperability

Chapter 10: Service-Orientation with .NET
Part II: Coupling, Abstraction, and
Discoverability

Chapter 11: Service-Orientation with .NET
Part III: Reusability and Agnostic Service Models

Chapter 12: Service-Orientation with .NET
Part IV: Service Composition and Orchestration
Basics

Chapter 13: Orchestration Patterns with WF
Chapter 14: Orchestration Patterns with BizTalk

Server

Part III: Infrastructure and Architecture

Chapter 15: Enterprise Service Bus with BizTalk
Server and Windows Azure

Chapter 16: Windows Azure Platform AppFabric
Service Bus

Chapter 17: SOA Security with .NET and Windows
Azure

Chapter 18: Service-Oriented Presentation
Layers with .NET

Chapter 19: Service Performance Optimization
Chapter 20: SOA Metrics with BAM

Part IV: Appendices

Appendix A: Case Study Conclusion
Appendix B: Industry Standards Reference
Appendix C: Service-Orientation Principles

Reference
Appendix D: SOA Design Patterns Reference
Appendix E: The Annotated SOA Manifesto
Appendix F: Additional Resources

SOA with .NET
and Windows Azure™

9.1 Standardized Service Contract

9.2 Canonical Schema

9.3 Data Model Transformation

9.4 Canonical Protocol

9.5 Canonical Expression

Chapter 9

Service-Orientation with .NET Part I:
Service Contracts and Interoperability

SOA PRINCIPLES & PATTERNS REFERENCED IN THIS CHAPTER

• Canonical Expression [715]

• Canonical Protocol [716]

• Canonical Resources [717]

• Canonical Schema [718]

• Data Model Transformation [732]

• Decoupled Contract [735]

• Dual Protocols [739]

• Federated Endpoint Layer [745]

• Messaging Metadata [753]

• Protocol Bridging [764]

• Schema Centralization [769]

• Standardized Service Contract (693)

Each of the referenced service-orientation principles was briefly introduced in
Chapter 3. The respective principle and pattern profile tables are available in
Appendices C and D.

Service-Orientation with .NET Part I 249

WCF (together with the .NET framework extensions and Windows Azure) establishes a
broad, almost all-encompassing platform for service development, deployment, and
hosting. When building entire service inventories upon such a platform, we need to con-
sider that one of the primary goals of service-oriented computing in general is that of
Increased Vendor Diversification Options.

This strategic goal aims to establish service-oriented technology architecture in such a
manner that best-of-breed technologies can be leveraged on the back-end, while
preserving a federated service endpoint layer on the consumer-side, which is related to
another primary goal called Increased Federation.

An important aspect of the Increased Vendor Diversification Options goal is the
“Options” part. This goal does not advocate that you diversify your IT enterprise. Doing
so unnecessarily can lead to increased governance burden and increased cost of owner-
ship. For example, if WCF, .NET, and Windows Azure continue to empower you to max-
imize business requirements fulfillment, the collective environment they establish can
be highly effective for broad SOA adoption. By leveraging common platform class
libraries, system services, repositories, and other mechanisms, we are, in effect, repeat-
edly applying the Canonical Resources [717] pattern and reaping its ownership benefits
on a potentially grand scale.

The goal of Increased Vendor Diversification Options simply states that you should
always retain the option of being able to bring in technologies and products from other
vendors. That way, when justified, you can diversify in order to increase your business
requirement fulfillment potential. In other words, avoid vendor lock-in so that, over
time, you are not inhibited by a specific vendor’s product roadmap (which may end up
straying from the direction in which you need to evolve your business automation
solutions).

To realize this goal we need to go back to the aforementioned goal of Increased Federa-
tion, a goal that is directly tied to the application of the Federated Endpoint Layer [745]
pattern. By establishing a layer of standardized service contracts (endpoints) federated
within a given service inventory boundary, we create an inter-service communications
framework that is completely abstracted from the technologies, platforms and products
that comprise individual, back-end, service architecture implementations.

It is this form of clean, far-reaching abstraction that gives us the freedom to diversify
without having to rip-and-replace an entire ecosystem. Instead, we can continue to
leverage existing vendor platforms as they remain useful and beneficial, and then refac-
tor individual service architectures independently to augment and grow our inventory
of services in tandem with on-going business change.

The success factors behind both the Increased Vendor Diversification Options and
Increased Federation strategic goals can be mapped to the appropriate design, develop-
ment, and architectural positioning of service contracts. These factors are critical to the
realization of the Increased Intrinsic Interoperability goal that is core to the overall objec-
tive and long-term target state advocated by service-orientation.

The attainment of an intrinsic level of interoperability within each service is a broad
topic with numerous sub-topics, many of which are addressed by various chapters in
this book. This chapter kicks things off by exploring the application of .NET technolo-
gies with key principles and patterns that pertain to service contract development and
the creation of federated service endpoints.

9.1 Standardized Service Contract

This principle advocates the standardization of service contracts that exist within a
given service inventory boundary (Figure 9.1). Within this context, standardization can
refer to the usage of industry standards (such as WSDL and XML Schema), but prima-
rily the focus is on custom design standards that are pre-defined and regulated (such as
canonical data models).

250 Chapter 9: Service-Orientation with .NET Part I

WSDL
Definition 1

WSDL
Definition 2

XML
Schema 3

XML
Schema 1

XML
Schema 2

Service Contract
Design Standards

Figure 9.1
The application of the Standardized Service Contract (693) principle relies
heavily on the use of design standards that regulate contract design across
services within a given service inventory.

Contract-First

To ensure that contracts are consistently standardized requires that we seize program-
matic control over how contracts are created, which is the basis of the contract-first
approach that is predominantly used when applying this principle.

9.1 Standardized Service Contract 251

There are various ways of going about contract-first development with .NET. The pri-
mary consideration is in determining in what sequence to define the various parts of a
service contract.

For example, here is a common three-step process:

1. Create or Reuse Data Contract

A WCF data contract most commonly exists as an XML schema that defines the data
structure and data types (as part of the overall data model) for a given set of data that is
exchanged by a service capability.

Following patterns, such as Canonical Schema [718] and Schema Centralization [769],
this step may involve creating a new data contract to be used by one or more services or
it may involve reusing an already existing (and standardized) data contract. The latter
circumstance may be due to a data contract that was previously customized or there
may be a requirement to use a data contract that exists as an industry standard XML
Schema (such as HR-XML or LegalML).

NOTE

Schema Centralization [769] and reusable schemas are discussed shortly
in the Canonical Schema section.

2. Create Message Contract

The body content of a given mes-
sage transmitted or received by a
service capability is primarily pre-
defined by the data contract. The
message contract encompasses the
data contract and further defines
metadata in the message header, as
per Messaging Metadata [753].
Message contracts within WCF are
primarily built using the SOAP
Body and Header constructs. Part of
this step may also involve pre-
defining fault contracts for excep-
tion conditions.

SERVICE MODELING & SERVICE CANDIDATES

Prior to applying any contract-first development
approach, it is generally assumed that some extent
of service modeling has already been completed.
The service modeling process is part of the serv-
ice-oriented analysis stage within a service’s over-
all delivery cycle. Service modeling produces
conceptual services called service candidates that
form the basis of service contracts. Often signifi-
cant up-front analysis is carried out in order to
define several service candidates for a specific
service inventory before physically building any
one service contract. This effectively creates a
service inventory blueprint that allows the basic
parts of service contracts to be well-defined and
further refined through iteration, prior to entering
the design and development phases.

3. Create Interface Contract

The interface contract is commonly equated to the abstract description of a WSDL doc-
ument wherein operation contracts are defined. When working with REST services, the
interface contract can be considered the subset of HTTP methods that are supported as
part of the overall uniform contract for a given service.

The interface contract and its operations or methods express the externally invokable
functionality offered by a service. An interface contract pulls together the data and mes-
sage contracts and associates them with appropriate operations or methods.

252 Chapter 9: Service-Orientation with .NET Part I

NOTE

For detailed coverage of carrying out contract-first processes with .NET
technologies, see the Decoupled Contract section in Chapter 10.

Standardized Service Contract (693) and Patterns

Beyond carrying out a contract-first approach to service design, there are many more
facets to applying the Standardized Service Contract (693) principle. Several of these
additional aspects will come up in the subsequent sections exploring SOA design pat-
terns related to service interoperability.

SUMMARY OF KEY POINTS

• The application of the Standardized Service Contract (693) principle
commonly involves following a contract-first approach to service-oriented
design.

• The Standardized Service Contract (693) principle is closely associated
with several patterns, including Canonical Schema [718], Schema Central-
ization [769], Canonical Protocol [716], and Canonical Expression [715], all
of which support its application in different ways.

9.2 Canonical Schema 253

9.2 Canonical Schema

The XML Schema Definition Language is a highly successful industry standard that has
received broad cross-platform support within, and well beyond, the SOA industry. With
this language you can use industry standard markup syntax to not only express the
structure and validation rules of business documents, but you can also use a series of
built-in data types to represent the actual data. This allows you to define complete data
models in a manner that is independent of any proprietary database or data representa-
tion technology.

Canonical Schema [718] establishes standardized XML Schema definitions (Figure 9.2),
which makes this a pattern that can be applied in direct support of Standardized Service
Contract (693).

Order

Address.xsd

Customer Vendor

Figure 9.2
By sharing a canonical schema definition, different services
increase their respective compatibility and interoperability.

Schema Centralization [769], a related pattern that mandates that schema definitions be
shared among service contracts, can be applied together with Canonical Schema [718] to
help create a flexible and streamlined data architecture that acts as a foundation layer for
a set of federated service contracts (Figure 9.3). The abstraction achieved by such a data
architecture allows you to build underlying services using .NET, Java, or any other back-
end implementation platform that supports XML Schema processing.

254 Chapter 9: Service-Orientation with .NET Part I

WSDL
Definition 1

WSDL
Definition 2

XML
Schema 3

XML
Schema 1

XML
Schema 2

Canonical
Schemas

Schema
Centralization

Figure 9.3
When canonical schemas are centralized, they are essentially reused by
different service contracts, resulting in increased normalization across
the service data and endpoint architecture.

Creating Schemas with Visual Studio

To build canonical XML schemas that we will eventually want to centralize, we need to
master the XML Schema Definition Language and customize these schemas using an
editor, such as the one provided by Visual Studio.

NOTE

This book does not provide tutorial coverage of the XML Schema Defini-
tion Language. If you are new to XML Schema, refer to Chapters 6, 12,
and 13 of the book Web Service Contract Design & Versioning for SOA.

Let’s now put together some simple schemas. Figure 9.4 shows a preview of the person
schema displayed in the Visual Studio 2010 Schema View. We can also refer to the per-
son schema as the person type, because it essentially establishes a complex type for the
person entity.

9.2 Canonical Schema 255

person

id
foreName
middleName
sureName
socSecNr
jobTitle
address

xs:positiveInteger
xs:string
xs:string
xs:string

xs:unsignedLong
xs:string

tns:address

sequence

sequence

address

address
city
state
zip
phone
country

xs:string
xs:string
xs:string
xs:string
xs:string
xs:string

gender tns:gender

Figure 9.4
XML Schema types defined.

We’ll begin with putting together the gender type first:

<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema
targetNamespace="http://schemas.example.org/
enterprise/models/v1"

xmlns="http://schemas.example.org/
enterprise/models/v1"

xmlns:mstns="http://schemas.example.org/
enterprise/models/v1"

version="1.0.1"
elementFormDefault="qualified">
<xs:simpleType name="gender">
<xs:restriction base="xs:string">
<xs:enumeration value="male" />
</xs:enumeration value="female" />

</xs:restriction>
</xs:simpleType>

</xs:schema>

Example 9.1

256 Chapter 9: Service-Orientation with .NET Part I

The validation logic in this schema only accepts string values that are “male” and
“female.” The gender type is saved as a separate XML schema file called gender.xsd.

Next, let’s create the address type:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://schemas.example.org/
enterprise/models/v1"

xmlns="http://schemas.example.org/
enterprise/models/v1"

xmlns:mstns="http://schemas.example.org/
enterprise/models/v1"

version="1.0.1"
elementFormDefault="qualified">
<xs:complexType name="address">
<xs:sequence>
<xs:element name="address" type="xs:string" />
<xs:element name="city" type="xs:string" />
<xs:element name="state" type="xs:string" />
<xs:element name="zip" type="xs:string" />
<xs:element name="phone" type="xs:string" />
<xs:element name="country" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:schema>

Example 9.2

The address type accepts strings for all of its child elements. This type is also saved in a
separate schema file (called address.xsd).

Finally, here’s the content for the person type, which is stored in the person.xsd file:

<xs:schema xmlns:xs=
"http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://schemas.example.org/
enterprise/models/v1"

targetNamespace="http://schemas.example.org/
enterprise/models/v1"

xmlns:mstns="http://schemas.example.org/
enterprise/models/v1"
version="1.1.20"

9.2 Canonical Schema 257

elementFormDefault="qualified">
<xs:include schemaLocation="Gender.xsd"/>
<xs:include schemaLocation="Address.xsd"/>
<xs:complexType name="person">
<xs:sequence>
<xs:element name="ID" type="xs:positiveInteger" />
<xs:element name="foreName"
type="xs:string" minOccurs="1"/>

<xs:element name="middleName" type="xs:string" />
<xs:element name="surName"
type="xs:string" minOccurs="1"/>

<xs:element name="socSecNr" type="xs:unsignedLong"
minOccurs="1" maxOccurs="1"/>

<xs:element name="jobTitle"
type="xs:string" minOccurs="0" maxOccurs="1" />

<xs:element name="address" type="tns:address" />
<xs:element name="gender" type="tns:gender" />

</xs:sequence>
</xs:complexType>
<xs:element name="person" type="tns:person" />

</xs:schema>

Example 9.3

Note how the types of elements address and gender refer to the types created in the
address.xsd and gender.xsd respectively. Two statements are necessary in order to make
the address element refer to the type defined in the address.xsd file. The first refers to
the previously created schema:

<xs:include schemaLocation="address.xsd"/>

The second specifies that the element address should be of this type:

<xs:element name="address" type="tns:address"/>

Also note that there is an element in the person XML schema that has the type of person.
This makes it possible to send the person type as a message. The gender and address
types do not have such an element because we are not planning to use them on their own
to define individual messages.

At this point our catalog of XML schemas looks like this:

258 Chapter 9: Service-Orientation with .NET Part I

Figure 9.5
The catalog of XML schemas.

Generating .NET Types

The types we have created can be used “as is” for message definitions in BizTalk, but to
use them for WCF (or ASMX) services, we need to generate .NET types using a utility
program called svcutil that is shipped with Visual Studio. To generate these types, use
the following statement at the Visual Studio command prompt:

svcutil /dcOnly /l:cs person.xsd address.xsd gender.xsd

Apart from referring to the previously created XML schema files, we are also using these
two switches:

• /dcOnly – instructs svcutil to create data contracts for us

• /l:cs – instructs svcutil that the language (l) of the generated code should be
C# (cs)

The code that scvutil generates based upon our types looks like this:

namespace schemas.example.org.enterprise.models.v1
{
using System.Runtime.Serialization;
[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute
("System.Runtime.Serialization", "4.0.0.0")]

[System.Runtime.Serialization.DataContractAttribute
(Name = "person", Namespace =
"http://schemas.example.org/enterprise/models/v1")]

public partial class person : object,
System.Runtime.Serialization.IExtensibleDataObject

{
private System.Runtime.Serialization.
ExtensionDataObject extensionDataField;

private long idField;
private string foreNameField;

9.2 Canonical Schema 259

private string middleNameField;
private string surNameField;
private ulong socSecNrField;
private string jobTitleField;
private schemas.example.org.enterprise.models.v1.
address addressField;

private schemas.example.org.enterprise.models.v1.
gender genderField;

public System.Runtime.Serialization.
ExtensionDataObject ExtensionData

{
get
{
return this.extensionDataField;
}
set
{
this.extensionDataField = value;
}

}
[System.Runtime.Serialization.
DataMemberAttribute(IsRequired = true)]

public long id
{
get

{
return this.idField;

}
set

{
this.idField = value;

}
}
[System.Runtime.Serialization.
DataMemberAttribute(IsRequired = true,
EmitDefaultValue = false, Order = 1)]

public string foreName
{
get

{
return this.foreNameField;

}
set

{
this.foreNameField = value;

260 Chapter 9: Service-Orientation with .NET Part I

}
}
[System.Runtime.Serialization.
DataMemberAttribute(IsRequired = true,
EmitDefaultValue = false, Order = 2)]

public string middleName
{
get

{
return this.middleNameField;

}
set

{
this.middleNameField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, EmitDefaultValue = false, Order = 3)]
public string surName
{
get

{
return this.surNameField;

}
set

{
this.surNameField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, Order = 4)]
public ulong socSecNr
{
get

{
return this.socSecNrField;

}
set
{
this.socSecNrField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(EmitDefaultValue = false, Order = 5)]
public string jobTitle

9.2 Canonical Schema 261

{
get

{
return this.jobTitleField;

}
set

{
this.jobTitleField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, EmitDefaultValue = false, Order = 6)]
public schemas.example.org.enterprise.models.v1.address address
{
get

{
return this.addressField;

}
set

{
this.addressField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, Order = 7)]
public schemas.example.org.enterprise.models.v1.gender gender
{
get

{
return this.genderField;

}
set

{
this.genderField = value;

}
}
}
[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.CodeDom.Compiler.GeneratedCodeAttribute
("System.Runtime.Serialization", "4.0.0.0")]
[System.Runtime.Serialization.DataContractAttribute

(Name = "address", Namespace = "http://schemas.example.org/
enterprise/models/v1")]
public partial class address : object,
System.Runtime.Serialization.IExtensibleDataObject

262 Chapter 9: Service-Orientation with .NET Part I

{
private System.Runtime.Serialization.
ExtensionDataObject extensionDataField;

private string addressMemberField;
private string cityField;
private string stateField;
private string zipField;
private string phoneField;
private string countryField;
public System.Runtime.Serialization.
ExtensionDataObject ExtensionData

{
get

{
return this.extensionDataField;

}
set

{
this.extensionDataField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(Name = "address", IsRequired = true,
EmitDefaultValue = false)]

public string addressMember
{
get

{
return this.addressMemberField;

}
set

{
this.addressMemberField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, EmitDefaultValue = false)]
public string city
{
get

{
return this.cityField;

}
set

{

9.2 Canonical Schema 263

this.cityField = value;
}

}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, EmitDefaultValue = false)]
public string state
{
get

{
return this.stateField;

}
set

{
this.stateField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, EmitDefaultValue = false)]
public string zip
{
get

{
return this.zipField;

}
set

{
this.zipField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, EmitDefaultValue = false, Order = 4)]
public string phone
{
get

{
return this.phoneField;

}
set

{
this.phoneField = value;

}
}
[System.Runtime.Serialization.DataMemberAttribute
(IsRequired = true, EmitDefaultValue = false, Order = 5)]
public string country

264 Chapter 9: Service-Orientation with .NET Part I

{
get

{
return this.countryField;

}
set

{
this.countryField = value;

}
}
}
[System.CodeDom.Compiler.GeneratedCodeAttribute
("System.Runtime.Serialization", "4.0.0.0")]

[System.Runtime.Serialization.DataContractAttribute
(Name = "gender", Namespace = "http://schemas.
example.org/enterprise/models/v1")]
public enum gender : int
{
[System.Runtime.Serialization.
EnumMemberAttribute()]

male = 0,
[System.Runtime.Serialization.
EnumMemberAttribute()]

female = 1,
}

}

Example 9.4

NOTE

As an alternative to the svcutil utility, you can also use the xsd.exe
utility, which will create .NET types that are serialized using the
XMLSerializer rather than the DataContractSerializer.

Using the DataContract Library

You can also create these types by using code directly with .NET, instead of working
with XML schema markup code. This next example shows how to create the three types
in .NET using the DataContract and DataMember attributes.

9.2 Canonical Schema 265

[DataContract(Name = "person", Namespace =
"http://schemas.example.org/enterprise/models/v1")]
public class Person : object,
System.Runtime.Serialization.IExtensibleDataObject

{
[DataMember(IsRequired = true)]
public int Id
{
get;
set;

}
[DataMember(IsRequired=true,
EmitDefaultValue=false, Order = 1)]

public string ForeName
{
get;
set;

}
[DataMember(IsRequired = true,
EmitDefaultValue=false, Order = 2)]

public string MiddleName
{
get;
set;

}
[DataMember(IsRequired = true,
EmitDefaultValue=false, Order = 3)]

public string SurName
{
get;
set;

}
[DataMember(IsRequired = true,
EmitDefaultValue=false, Order = 4)]

public ulong SocSecNr
{
get;
set;

}
[DataMember(Order = 5)]
public string JobTitle
{
get;
set;

}
[DataMember(Order = 6)]

266 Chapter 9: Service-Orientation with .NET Part I

The address and gender types are created as separate classes that use DataContract and
DataMember attributes. The DataContract attribute is used to let .NET know that this is
a data contract and that it should be serialized using DataContractSerializer. This
serializer will only serialize fields that are annotated with the DataMember attribute.

Apart from signaling to the DataContractSerializer that a particular element should
be serialized, the DataMember attribute accepts named arguments.

Specifically, the named arguments used in Example 9.5 are:

• Order – affects the order in which the fields of the type are serialized

• IsRequired – instructs consumers and services whether or not a field is required

• EmitDefailtValue – when set to false, the default value (for example, 0 for an int)
will not be serialized

public Address Address
{
get;
set;

}
[DataMember(Order = 7)]
public Gender Gender
{
get;
set;

}
private System.Runtime.Serialization.
ExtensionDataObject extensionDataField;

public System.Runtime.Serialization.
ExtensionDataObject ExtensionData

{
get

{
return this.extensionDataField;

}
set

{
this.extensionDataField = value;

}
}

Example 9.5

9.3 Data Model Transformation 267

The DataMember attribute has several other arguments that can come in handy. For
example, should you require a different name in the .NET code and the serialized mes-
sage, the Name attribute lets you change the name of the serialized value.

Figure 9.6 shows the resulting library created so far.

Figure 9.6
The Service Library defined so
far, including Address, Gender,
and Person class definitions.

SUMMARY OF KEY POINTS

• Canonical Schema [718] establishes the requirement for schemas used by
services within a service inventory to be standardized.

• Visual Studio provides an editor that allows for the definition of XML
schemas.

• With .NET, XML Schema types can be created with the XML Schema
markup language or through the use of the DataContract library.

9.3 Data Model Transformation

One goal of the Standardized Service Contract (693) principle is to avoid having to trans-
form data at runtime. This means that the more successfully and broadly we are able to
apply this principle, the less need we will have for patterns like Data Model Transfor-
mation [732]. However, even when seeking service contract standardization, there are
situations where this pattern is necessary.

For example:

• When an IT enterprise has multiple domain service inventories, each collection of
services can be subject to different design standards. In this case, when required to
enable cross-inventory communication (or when creating a service composition
comprised of services from multiple service inventories), any disparity in message
data models will need to be overcome by applying Data Model Transformation
[732].

• When data needs to be shared between different organizations (or organizational
entities), Data Model Transformation [732] will generally be required unless
Canonical Schema [718] has been successfully applied via the use of custom or
industry-standard message schemas.

• When services encapsulate legacy systems and resources, they will inevitably need
to transform data between legacy data models and the standardized data model
defined in the service contracts. In this case, Data Model Transformation [732] is
carried out within the service architecture.

• When services within a service inventory are not all successfully standardized
(meaning the Standardized Service Contract (693) principle was not applied to its
full extent), Data Model Transformation [732] will be required to enable the neces-
sary interoperability.

Data Model Transformation [732] is generally carried out by creating mapping logic
between disparate schemas or data types (Figure 9.7). This type of logic can often
become complex and is sometimes even impossible to develop when the disparity
between data models is too large.

268 Chapter 9: Service-Orientation with .NET Part I

Transform.xsl

Address1.xsd

Address2.xsd

Service B

Service A

Figure 9.7
Service A sends a message to Service B. The mes-
sage sent by Service A contains address data that
was defined by a schema that is different than the
schema Service B uses in its service contract for this
same information. Therefore, transformation logic is
processed by a service agent in order to transform
the message at runtime into data that complies with
Service B’s schema.

9.3 Data Model Transformation 269

For example, you may encounter mandatory fields in one model that don’t exist in the
other. In such a case, transforming in one direction may work, but transforming in the
opposite direction may not. The following example demonstrates by showing how we
may not be able to determine which value(s) belong in the middleNames element:

Data Model #1

<person1>
<foreNames>Max</foreNames>
<middleNames>Carl</middleNames>
<surNames>von Sydow</surNames>

</person1>

Data Model #2

<person2>
<name>Max Carl von Sydow</name>

</person2>

Example 9.6
Transforming from Data Model #1 to Data Model #2 works, but the opposite transformation is more difficult.

Besides the potential complexity of mapping logic, there are other well-known impacts
of applying this pattern. The additional logic will introduce development and gover-
nance effort, and can further affect the performance of services and service compositions
(sometimes significantly so, especially with more complex mapping logic).

The following sections briefly show three ways to apply Data Model Transformation
[732] using .NET technologies.

Object-to-Object

A message sent by a service consumer to a service can be serialized from XML into an
object, translated into another object, and then serialized into XML again. This may be a
suitable approach when you must use all or most of the data in the message, either for
passing the information onto another service or for some other purpose.

The first step in this process is to understand the mapping requirements. Let’s take, for
example, a scenario where we need to transform data defined by a person type into a
customer type (Figure 9.8). The logic behind this transformation could be as follows:

• map the person.id field to the customer.id field

• map the person.foreName field to the customer.firstName field

• map the person.surName field to the customer.lastName field

• map the person.address.phone field to the customer.phone field

• map the person.gender field to the customer.gender field

270 Chapter 9: Service-Orientation with .NET Part I

xs:int
xs:string
xs:string
xs:string
xs:string

customer

person

id
foreName
middleName
sureName
socSecNr
jobTitle
address

xs:positiveInteger
xs:string
xs:string
xs:string

xs:unsignedLong
xs:string

tns:address

sequence

sequence

address

address
city
state
zip
phone
country

xs:string
xs:string
xs:string
xs:string
xs:string
xs:string

sequence

id
firstName
lastName
phone
gender

gender tns:gender

Figure 9.8
Mapping fields from the person type to the customer type.

After generating proxy clients for the different services with the “Add service reference”

feature of Visual Studio, we also have .NET code that represents a person and a cus-
tomer. The translation could then be programmed using a static extension method as
shown here:

public static Customer TransformPersonToCustomer
(this Person person)

{
Customer customer = new Customer();
customer.id = person.Id;
customer.firstName = person.ForeName;
customer.lastName = person.SurName;
customer.phone = person.Address.PhoneNr;

9.3 Data Model Transformation 271

This code was written knowing that person and customer use the same integer represen-
tations of male and female. The next example shows how this translation logic is applied
on the message retrieved from the first service before sending it to the second. (Note that
since this logic was written as an extension method it can be called as if it was a method
of the person class.)

customer.gender = IntToEnum<customergenderType>((int)
person.gender);

return customer;
}
public static T IntToEnum<T>(int value)
{
return (T)Enum.ToObject(typeof(T), value);

}

Example 9.7

PersonServiceClient personService = new PersonServiceClient();
var aPerson = personService.GetPerson(2);
var customerFromPerson =
getPersonData.TransformPersonToCustomer();

CustomerServiceClient customerService = new
CustomerServiceClient();

customerService.UpdateCustomer(customerFromPerson);

Example 9.8

LINQ-to-XML

Sometimes you may want to transform a type but you only need to transform a subset
of the overall type. In those cases, deserializing a large document and building a large
object graph can be wasteful and can make code more sensitive to future changes in data
structures.

To handle this situation you can use LINQ-to-XML on the raw message that is returned
from a service, as follows:

Message messageOut = channel.Request(messageIn);
XmlReader readResponse = messageOut.GetReaderAtBodyContents();
XmlDocument doc = new XmlDocument();
doc.Load(readResponse);
var xDoc = XDocument.Parse(doc.OuterXml);
XNamespace xmlns2 = xDoc.Root.Attribute("xmlns").Value;

In this example, the response content from the message issued by the service is received;
along with the namespace, the incoming XML structure is transformed into an object.
Note that this code would continue to work even if the namespace of the response
changes. The only change that can break this code is if one of the elements that are
explicitly asked for is removed or has its name altered. An additional benefit of this
approach is that we can process data types that are not otherwise easily handled in WCF,

such as the xsd:choice construct.

XSLT Transformation

An option that is useful for avoiding deserialization is XSLT. By defining mapping logic
with the XSLT language, we only take the data that we are interested in into our objects
and leave the rest. XSLT can be used by different parts of the .NET platform and is a com-
monly supported industry standard, meaning that it may also be used with some legacy
systems.

Here’s a sample XSLT transformation:

272 Chapter 9: Service-Orientation with .NET Part I

var transformed = from d in xDoc.Descendants
(xmlns2 + "personElement")

select new Customer
{
firstName = d.Element(xmlns2 + "foreName").Value,
lastName = d.Element(xmlns2 + "surName").Value,
id = Convert.ToInt32(d.Element(xmlns2 + "id").Value),
gender = (Customer.genderType)
Enum.Parse(typeof(Customer.genderType),
d.Element(xmlns2 + "gender").Value),
phone = d.Element(xmlns2 + "address").
Element(xmlns2 + "phonenr").Value,

};

Example 9.9

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:b="http://schemas.example.org/enterprise/models/v1"
xmlns:a="http://schemas.example.org/enterprise/models/v2">
<xsl:template match="/">
<a:customerElement>
<a:id>

9.3 Data Model Transformation 273

The semantics of this transformation logic are quite straight forward in that the markup
shows how to find the values for an element.

Using WCF, you could apply this XSLT transformation as follows:

<xsl:value-of select="b:personElement/b:id"/>
</a:id>
<a:firstName>
<xsl:value-of select="b:personElement/b:foreName"/>

</a:firstName>
<a:lastName>
<xsl:value-of select="b:personElement/b:surName"/>

</a:lastName>
<a:phone>
<xsl:value-ofselect=
"b:personElement/b:address/b:phonenr"/>

</a:phone>
<a:gender>
<xsl:value-of select="b:personElement/b:gender"/>

</a:gender>
</a:customerElement>

</xsl:template>
</xsl:stylesheet>

Example 9.10

Message messageOut = channel.Request(messageIn);
XmlReader readResponse = messageOut.GetReaderAtBodyContents();
XslCompiledTransform xslt = new XslCompiledTransform();
xslt.Load("XMLMessages/TransformationPersonToCustomer.xslt");
using (MemoryStream ms = new MemoryStream())
{
XmlWriterSettings ws = new XmlWriterSettings();
ws.Encoding = Encoding.UTF8;
using (XmlWriter xmlWriter = XmlWriter.Create(ms, ws))
{
xslt.Transform(readResponse, xmlWriter);

}
xmlWriter

}

Example 9.11

SUMMARY OF KEY POINTS

• Although Data Model Transformation [732] is a pattern we try to avoid when
applying Standardized Service Contract (693) and Canonical Schema
[718], it is still commonly applied within service-oriented architectures.

• With .NET, three common ways of applying Data Model Transformation
[732] are object-to-object, LINQ-to-XML, and XSLT.

9.4 Canonical Protocol

In heterogeneous environments it is common for systems to have difficulties communi-
cating directly. Some may be using the TCP as a transport protocol, while others may
only be capable of using HTTP over TCP, or even SOAP (over HTTP and TCP). Even
when two legacy systems use the same protocol, they might be using different versions,

which can result in the same communication-level incompatibility.

A technique for overcoming these problems is via Protocol Bridging [764]. In essence,

this pattern involves placing an intermediary in between two pieces of software that
converts between the incompatible protocols, thereby enabling them to exchange data.
As with Data Model Transformation [732], applying this pattern will lead to increased
development effort and increased performance overhead.

The Standardized Service Contract (693) principle further helps establish the standard-
ized interoperability on the protocol level with the help of the Canonical Protocol [716]
pattern, which requires that communication protocol (including protocol versions) be
regulated among services within the same service inventory boundary.

Of course, this leads to the question of which protocol to choose. The choice of protocol
will be dependent on the choice of service implementation medium. Currently there are
three common service implementation options:

• components

• Web services

• REST services

The following sections explore the differences of each in relation to building services
with WCF.

274 Chapter 9: Service-Orientation with .NET Part I

9.4 Canonical Protocol 275

Web Service

A Web service uses a WSDL definition and one or more XML schemas to specify its inter-
faces. Its protocol is usually based on the use of SOAP over HTTP. Figure 9.9 shows a
Web service implemented in WCF with the IUserBankService interface and Figure 9.10
illustrates the DataContract for representing the User class.

Figure 9.9
This Web service has methods (operations)
for creating, getting, updating and modifying
a user.

Figure 9.10
The User class and associated properties.

As shown in the following example, the interface is created and annotated with the
ServiceContract and OperationContract attributes.

[ServiceContract]
public interface IUserBankService
{
[OperationContract]
void CreateUser(Core.Models.User user);

The ServiceContract attribute indicates that it’s a WCF service and the Opera-
tionContract attribute indicates that the method that is annotated with this attribute
needs to be exposed by the service. Note that these attributes are used irrespective of the
kind of service we’re creating with WCF.

The interface is then implemented in a class, as shown here:

276 Chapter 9: Service-Orientation with .NET Part I

[OperationContract]
Core.Models.User GetUser(Guid userId);
[OperationContract]
void ModifyUser(Core.Models.User modifiedUser);
[OperationContract]
void DeleteUser(Guid userId);

}

Example 9.12

public class UserBankService:IUserBankService
{
public void CreateUser(Core.Models.User user)
{
throw new NotImplementedException();

}
public Core.Models.User GetUser(Guid userId)
{
throw new NotImplementedException();

}
public void ModifyUser(Core.Models.User modifiedUser)
{
throw new NotImplementedException();

}
public void DeleteUser(Guid userId)
{
throw new NotImplementedException();

}
}

Example 9.13

As you can see, no attributes are used on the class as they were already used on the inter-
face. To make the service actually do something, we would need to populate the method
definitions with code.

9.4 Canonical Protocol 277

Note that we could have decorated the class and the methods in the class with the WCF
attributes. By instead decorating the interface, we have applied the Decoupled Contract
[735] pattern by separating the service definition from its implementation.

Second, there is nothing in our code so far that specifies that this should be a Web service.
To make it into a Web service, we can add a configuration. This next example shows the rel-
evant part of the configuration that implements this service as an actual Web service:

...
<system.serviceModel>
<services>
<service name="Core.Services.UserBankService">
<endpoint address="..." binding="basicHttpBinding"
contract="Core.Services.IUserBankService">
...

</endpoint>
</service>

</services>
...

</system.serviceModel>
...

Example 9.14

basicHttpBinding is what makes this service into a Web service, as it instructs WCF to
use a WS-BasicProfile Web service communication mechanism with HTTP as transport
and messages encoded as text/XML.

REST Service

When designing a service as a REST service we can still
use WCF and the resulting code is actually quite simi-
lar to that of a Web service implementation. Figure 9.11
shows an interface that corresponds to the previous
Web service example.

As with the Web service interface definition, the REST
service interface is annotated with WCF attributes:

Figure 9.11
The interface definition for the REST serv-
ice is identical to the previous definition
for the Web service, except for the name.

The ServiceContract and OperationContract attributes are still there, but we also
added WebInvoke and WebGet attributes. These attributes (originally introduced in
.NET framework 3.5) are specific for a REST service implementation and specify opera-
tion behaviors.

The WebInvoke attribute makes it possible for methods to invoke using the HTTP pro-
tocol. This attribute takes some arguments, and the most significant of these is the
method argument. The valid values of the method argument correspond to the POST,

PUT, and DELETE HTTP methods. The HTTP protocol offers additional methods, but
these are the only ones supported by the WebInvoke attribute. (The WebGet attribute also
allows you to specify that a method should be possible to invoke using HTTP GET.)

After creating the interface we again need a class that implements it. Just as with a Web
service, we can use all the attributes directly on the class.

Component

Components differ from Web service and REST service implementation options in that
they are more technology and platform specific, especially in relation to transport pro-
tocols. A component is implemented in a certain language and uses certain frameworks.
Therefore, in order to use a component you need to have access to the component tech-
nology locally.

278 Chapter 9: Service-Orientation with .NET Part I

[ServiceContract]
public interface IUserBankServiceRest
{
[OperationContract]
[WebInvoke(Method = "POST", BodyStyle =
WebMessageBodyStyle.Bare,
ResponseFormat = WebMessageFormat.Xml)]

void CreateUser(Core.Models.User user);
[OperationContract]
[WebGet(UriTemplate="users/{userId}")]
Core.Models.User GetUser(string userId);
[OperationContract]
[WebInvoke(Method = "PUT")]
void ModifyUser(Core.Models.User modifiedUser);
[OperationContract]
[WebInvoke(Method = "DELETE")]
void DeleteUser(Guid userId);

}

Example 9.15

9.4 Canonical Protocol 279

Another differentiator is that the service is not called remotely. Rather, you instantiate a
component locally and use its API, which is why components are said to be more tightly
coupled than Web services and REST services.

In the following example we can use the same class as we used earlier when we imple-
mented a Web service. Instead of calling it remotely as a Web service we use it as follows:

UserBankService serviceAPI = new UserBankService();
serviceAPI.CreateUser(new Core.Models.User()
{
UserId = Guid.NewGuid(),
Address = "MyAdress",
FirstName = "John",
LastName = "Smith",
PhoneNumber = "0332133333",
SocSecNumber = "730X29"
}

);

Example 9.16

Another WCF Option: Named Pipes

When you develop services in WCF you can also consider the use of named pipes as the
transport protocol. This option is similar to using a WCF library as a component because
you cannot choose the technology platform for the consumer freely.

The benefit, compared to the component option, is that a service exposed through
named pipes runs as an independent process. However, a service exposed using named
pipes can only be accessed when the service consumer is installed on the same machine.

Access can be enabled by changing the binding of the service to NetNamedPipeBinding.

Dual Protocols with WCF

Although limiting service interaction within a service inventory to one transport proto-
col is desirable, it can sometimes introduce limitations that make some service require-
ments hard to fulfill. There may be circumstances that warrant the use of a secondary
protocol to complement the primary protocol, as per Dual Protocols [739]. This pattern
is commonly applied when the primary protocol introduces performance issues or
when a new protocol is introduced as the primary protocol and a period of transition is
allowed for the migration of services from the now demoted protocol (the secondary
protocol) to the new primary protocol.

WCF enables the application of Dual Protocols [739] by allowing additional endpoints
to be added to services via configuration with little or no change to existing code.
Configuring a new endpoint is a matter of adding a new address and binding—the
ServiceContract part can be reused.

SUMMARY OF KEY POINTS

• Canonical Protocol [716] is concerned with establishing baseline interoper-
ability on the transport and messaging protocol layers.

• Different service implementation mediums will generally require different
applications of this pattern.

• The Dual Protocols [739] pattern allows for primary and secondary proto-
cols to be standardized within a service inventory.

9.5 Canonical Expression

When a service is created and included in a service inventory, it is important that future
service consumers (or rather those humans that develop the software that consume serv-
ices) will be able to understand the capabilities that the service exposes. To make this
easier to understand we utilize naming conventions, as per Canonical Expression [715].
These conventions should be applied to both the name of the service as well as its indi-
vidual service capabilities.

Service Naming Conventions

The name of a service should generally communicate its functional context. The goal of
Canonical Expression [715] is to realize this clarity but also to ensure that all services
within a given service inventory are named consistently.

For example, you may want to avoid having an Order service and a PurchaseStatistics
service in the same inventory (assuming that Order and Purchase refers to the same
thing). To resolve this type of situation, the services could be renamed with “Order” or
“Purchase,” but not both. As shown in Figure 9.12, this means that the service should be
named Purchase or PurchaseStatistics – or – Order or OrderStatistics.

280 Chapter 9: Service-Orientation with .NET Part I

9.5 Canonical Expression 281

Service Capability Naming Conventions

Naming service capabilities depends on the type of implementation medium used for
the service.

With Web service operations, naming preferences are similar to the naming conventions
of methods used with components.

For example, each operation or method name should:

• describe its purpose (preferably using a verb+noun format)

• be as long as necessary

• describe the return value (if there is one)

For Web service operation and component method naming, it is usually required to stan-
dardize certain types of wording to ensure consistency. For example, here are some
words that could be used interchangeably:

• estimate ⇔ forecast

• forward ⇔ relay

• cease ⇔ finish

Order
Statistics

Purchase
Statistics

Order

Purchase

Figure 9.12
Service naming conventions limit the naming options
of services.

For example, we want to avoid having a GetOrderStatus operation alongside a
RetrieveStatisticsPerOrderMode operation because “Get” and “Retrieve” can be consid-
ered comparable verbs. With naming standards we can ensure that the capabilities will
be consistent (like GetOrderStatus and GetStatisticsPerOrderStatus).

For REST services, the focus is on the naming of resources. In order to support consumer
requirements, it may be necessary to expose several resources with overlapping naming
data. In this case, naming becomes especially important as you wouldn’t want con-
sumer designers to misunderstand which resource their program needs to access.

Because REST services rely on the use of Uniform Contract (generally via HTTP meth-
ods), the method does not define the naming of the actual capability. The design effort
is instead shifted to determining which resources to expose as well as the structure of
input and output messages.

SUMMARY OF KEY POINTS

• Canonical Expression [715] aims to establish content consistency across
service contract definitions within a service inventory.

• Most commonly, this pattern is applied via naming conventions for services
and service capabilities.

282 Chapter 9: Service-Orientation with .NET Part I

	SOA_.Net_Chapter_8 1.pdf
	SOA_.Net_Chapter_8 2
	SOA_.Net_Chapter_9

