
SOA with .NET
& Windows Azure™
Realizing Service-Orientation with the Microsoft Platform

Edited and Co-Authored by Thomas Erl,
World’s Top-Selling SOA Author

Forewords by
S. Somasegar
David Chappell

David Chou, John deVadoss, Nitin Gandhi, Hanu Kommapalati,
Brian Loesgen, Christoph Shittko, Herbjorn Wilhelmsen, Mickie Williams

With contributions from Scott Golightly, Daryl Hogan, Jeff King, Scott Seely
With additional contributions by members of the Microsoft Windows Azure and AppFabric teams

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

ErlSoftware Engineering/Microsoft Programming

“Microsoft’s diverse product line has long supported
the service-oriented enterprise, but putting it all
together into a cohesive whole can be daunting.
From more established products, like Windows
Communication Foundation, Windows Workflow
Foundation, Microsoft Office SharePoint Server, and
BizTalk Server, to newer offerings like Windows Azure
and AppFabric, the experts assembled here expose
the sweet spots for each technology, talk through
the high-level trade-offs, and offer a roadmap to a
unified Microsoft SOA story.”

—Kevin P. Davis, Ph.D., Software Architect

“This book excels in giving hands-on and in-depth
expertise on the SOA architecture style with the
.NET framework and the Azure cloud platform. It’s a
practical guide for developers, architects, and SOA
implementers. A must read!”

—Ricardo P. Schluter, ICT Architect,
Parnassia Bavo Group

“While the industry overall may have hyped ‘the
cloud’ to the level it often seems to cure world
hunger, SOA with .NET and Windows Azure helps cut
through the questions and hype and more clearly
discusses the benefits and practical techniques for
putting it to work in the real world. This book helps
you understand the benefits associated with SOA
and cloud computing, and also the techniques for
connecting your current IT assets with new composite
applications and data running in the cloud. This
book will help you understand modern middleware
technologies and harness the benefits of the cloud
both on and off premises.”

—Burley Kawasaki, Director of Product Management,
Microsoft

“The authors have a combined SOA and .NET
experience of several decades—which becomes
obvious when reading this book. They don’t just
lead you down one path with a single descriptive
solution. Instead, the sometimes nasty trade-offs
that architects face in their design decisions are
addressed. These are then mapped to the Microsoft
.NET platform with clear code examples. A very
refreshing look at this major contender in the
SOA space and a definite must for the .NET SOA
practitioner!”

—Dr. Thomas Rischbeck, IT Architect, Innovation
Process Technology

“In order to evolve as a software craftsman one must
read excellent books that will help you grow and
evolve in your profession. One of those books that
every software craftsmen interested in good design
and best practices should read is SOA with .NET
and Windows Azure. With this book, you will learn
which design patterns will provide the best solution
for the kinds of software design problems you, as
a developer or designer, face every day. This book
has everything that software architects, software
designers, and programmers need to know when
building great quality software with Microsoft
technologies.

“This will undoubtedly be one of those books that you
reference repeatedly when starting new SOA projects.
There is plenty of information that even those not
working with typical service-oriented architecture
will find very useful. With plenty of real-life examples
(code, design, and modeling), readers see in a
practical manner how they could use SOA patterns
to solve everyday software problems and be more
productive. SOA with .NET and Windows Azure will
fit in my top three books and will definitely be one of
those that I will use in my everyday work.”

—Arman Kurtagic, Consultant at Omegapoint AB

SOA with .NET
& Windows Azure

SOA with .NET
& Windows Azure

SOA with .NET and Windows Azure™

Realizing Service-Orientation with the Microsoft Platform

SO
A

 w
ith .N

ET
&

 W
ind

o
w

s A
zu

re
™

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

ISBN-13:
ISBN-10:

978-0-13-158231-6
0-13-158231-3

9 7 8 0 1 3 1 5 8 2 3 1 6

5 5 4 9 9

$54.99 U.S. $65.99 CANADA

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

THE PRENTICE HALL SERVICE-ORIENTED

COMPUTING SERIES FROM THOMAS ERL

“Explaining the intersection of these two worlds—service-orientation and
.NET technologies—is exactly what this book does. Its team of specialist
authors provides a concrete, usable guide to this combination, ranging
from the fundamentals of service-orientation to the more rarified air
of .NET services in the cloud and beyond. If you’re creating service-
oriented software on the Microsoft platform—that is, if you’re a
serious .NET developer—mastering these ideas is a must.”

From the Foreword by David Chappell, Chappell & Associates

informit.com/soa
soabooks.com
soaschool.com
soasystems.com
soapatterns.com

About the Web Sites

This book series is further supported by a
series of resources sites, including:

• www.soabooks.com
• www.soaspecs.com
• www.soamag.com
• www.serviceorientation.com
• www.soapatterns.org
• www.soaprinciples.com
• www.whatissoa.com

Topic Areas

This book covers the following primary topics:

• Microsoft Service Technologies
• Microsoft Enterprise Technologies
• On-Premise & Cloud-Based Service Topics
• Industry Service Technologies & Mediums
• Service-Oriented Technology Architectural Models
• Service-Orientation Design Paradigm
• Service-Orientation Design Principles
• SOA Design Patterns

The Authoritative Guide to Building Service-Oriented Solutions
with Microsoft .NET Technologies and the Windows Azure
Cloud Computing Platform
In SOA with .NET and Windows Azure, top Microsoft technology experts team up with
Thomas Erl to explore service-oriented computing with Microsoft’s latest .NET service
technologies and Windows Azure innovations.

The authors provide comprehensive documentation of on-premise and cloud-based
modern service technology advancements within the Microsoft platform and further
show how these technologies have increased the potential for applying and realizing
service-orientation practices and goals.

Specifically, the book delves into Microsoft enterprise technologies, such as:
l	 Windows Communication Foundation (WCF)
l	 Windows Azure
l	 Windows Workflow Foundation (WF)
l	 Windows Azure AppFabric
l	 BizTalk Server
l	 Windows Presentation Foundation (WPF)

...as well as industry service mediums, including WS-* and REST, and many related
service industry standards and technologies.

The book steps through common SOA design patterns and service-orientation principles,
along with numerous code-level examples that further detail various technology
architectures and implementations.

Foreword by S. Somasegar
Foreword by David Chappell
Chapter 1: Introduction
Chapter 2: Case Study Background

Part I: Fundamentals

Chapter 3: SOA Fundamentals
Chapter 4: A Brief History of Legacy .NET

Distributed Technologies
Chapter 5: WCF Services
Chapter 6: WCF Extensions
Chapter 7: .NET Enterprise Services Technologies
Chapter 8: Cloud Services with Windows Azure

Part II: Services and Service Composition

Chapter 9: Service-Orientation with .NET
Part I: Service Contracts and Interoperability

Chapter 10: Service-Orientation with .NET
Part II: Coupling, Abstraction, and
Discoverability

Chapter 11: Service-Orientation with .NET
Part III: Reusability and Agnostic Service Models

Chapter 12: Service-Orientation with .NET
Part IV: Service Composition and Orchestration
Basics

Chapter 13: Orchestration Patterns with WF
Chapter 14: Orchestration Patterns with BizTalk

Server

Part III: Infrastructure and Architecture

Chapter 15: Enterprise Service Bus with BizTalk
Server and Windows Azure

Chapter 16: Windows Azure Platform AppFabric
Service Bus

Chapter 17: SOA Security with .NET and Windows
Azure

Chapter 18: Service-Oriented Presentation
Layers with .NET

Chapter 19: Service Performance Optimization
Chapter 20: SOA Metrics with BAM

Part IV: Appendices

Appendix A: Case Study Conclusion
Appendix B: Industry Standards Reference
Appendix C: Service-Orientation Principles

Reference
Appendix D: SOA Design Patterns Reference
Appendix E: The Annotated SOA Manifesto
Appendix F: Additional Resources

SOA with .NET
and Windows Azure™

8.1 Cloud Computing 101

8.2 Windows Azure Platform Overview

8.3 Windows Azure Roles

8.4 Hello World in Windows Azure

8.5 A Web Service in Windows Azure

8.6 A REST Service in Windows Azure

8.7 Windows Azure Storage

Chapter 8

Cloud Services with Windows Azure

Microsoft’s Software-plus-Services strategy represents a view of the world where
the growing feature-set of devices and the increasing ubiquity of the Web are

combined to deliver more compelling solutions. Software-plus-Services represents an
evolutionary step that is based on existing best practices in IT and extends the applica-
tion potential of core service-orientation design principles.

Microsoft’s efforts to embrace the Software-plus-Services vision are framed by three
core goals:

• user experiences should span beyond a single device

• solution architectures should be able to intelligently leverage and integrate
on-premise IT assets with cloud assets

• tightly coupled systems should give way to federations of cooperating systems
and loosely coupled compositions

The Windows Azure platform represents one of the major components of the Software-
plus-Services strategy, as Microsoft’s cloud computing operating environment,
designed from the outset to holistically manage pools of computation, storage and net-
working; all encapsulated by one or more services.

8.1 Cloud Computing 101

Just like service-oriented computing, cloud computing is a term that represents many
diverse perspectives and technologies. In this book, our focus is on cloud computing in
relation to SOA and Windows Azure.

Cloud computing enables the delivery of scalable and available capabilities by leverag-
ing dynamic and on-demand infrastructure. By leveraging these modern service tech-
nology advances and various pervasive Internet technologies, the “cloud” represents an
abstraction of services and resources, such that the underlying complexities of the tech-
nical implementations are encapsulated and transparent from users and consumer pro-
grams interacting with the cloud.

8.1 Cloud Computing 101 207

At the most fundamental level, cloud computing impacts two aspects of how people
interact with technologies today:

• how services are consumed

• how services are delivered

Although cloud computing was originally, and still often is, associated with Web-based
applications that can be accessed by end-users via various devices, it is also very much
about applications and services themselves being consumers of cloud-based services.
This fundamental change is a result of the transformation brought about by the adop-
tion of SOA and Web-based industry standards, allowing for service-oriented and Web-
based resources to become universally accessible on the Internet as on-demand services.

One example has been an approach whereby programmatic access to popular functions
on Web properties is provided by simplifying efforts at integrating public-facing serv-
ices and resource-based interactions, often via RESTful interfaces. This was also termed
“Web-oriented architecture” or “WOA,” and was considered a subset of SOA. Architec-
tural views such as this assisted in establishing the Web-as-a-platform concept, and
helped shed light on the increasing inter-connected potential of the Web as a massive
collection (or cloud) of ready-to-use and always-available capabilities.

This view can fundamentally change the way services are designed and constructed, as
we reuse not only someone else’s code and data, but also their infrastructure resources,

and leverage them as part of our own service implementations. We do not need to
understand the inner workings and technical details of these services; Service Abstrac-
tion (696), as a principle, is applied to its fullest extent by hiding implementation details
behind clouds.

With regards to service delivery, we are focused
on the actual design, development, and imple-
mentation of cloud-based services. Let’s begin
by establishing high-level characteristics that a
cloud computing environment can include:

• generally accessible

• always available and highly reliable

• elastic and scalable

• abstract and modular resources

SOA PRINCIPLES & PATTERNS

There are several SOA design
patterns that are closely related to
common cloud computing imple-
mentations, such as Decoupled
Contract [735], Redundant Imple-
mentation [766], State Repository
[785], and Stateful Services [786]. In
this and subsequent chapters, these
and other patterns will be explored
as they apply specifically to the Win-
dows Azure cloud platform.

• service-oriented

• self-service management and simplified provisioning

Fundamental topics regarding service delivery pertain to the cloud deployment model
used to provide the hosting environment and the service delivery model that represents
the functional nature of a given cloud-based service. The next two sections explore these
two types of models.

Cloud Deployment Models

There are three primary cloud deployment models. Each can exhibit the previously
listed characteristics; their differences lie primarily in the scope and access of published
cloud services, as they are made available to service consumers.

Let’s briefly discuss these deployment models individually.

Public Cloud

Also known as external cloud or multi-tenant cloud, this model essentially represents a
cloud environment that is openly accessible. It generally provides an IT infrastructure in
a third-party physical data center that can be utilized to deliver services without having
to be concerned with the underlying technical complexities.

Essential characteristics of a public cloud typically include:

• homogeneous infrastructure

• common policies

• shared resources and multi-tenant

• leased or rented infrastructure; operational expenditure cost model

• economies of scale and elastic scalability

Note that public clouds can host individual services or collections of services, allow for
the deployment of service compositions, and even entire service inventories.

Private Cloud

Also referred to as internal cloud or on-premise cloud, a private cloud intentionally lim-
its access to its resources to service consumers that belong to the same organization that
owns the cloud. In other words, the infrastructure that is managed and operated for one

208 Chapter 8: Cloud Services with Windows Azure

8.1 Cloud Computing 101 209

organization only, primarily to maintain a consistent level of control over security, pri-
vacy, and governance.

Essential characteristics of a private cloud typically include:

• heterogeneous infrastructure

• customized and tailored policies

• dedicated resources

• in-house infrastructure (capital expenditure cost model)

• end-to-end control

Community Cloud

This deployment model typically refers to special-purpose cloud computing environ-
ments shared and managed by a number of related organizations participating in a com-
mon domain or vertical market.

Other Deployment Models

There are variations of the previously discussed deployment models that are also worth
noting. The hybrid cloud, for example, refers to a model comprised of both private and
public cloud environments. The dedicated cloud (also known as the hosted cloud or vir-
tual private cloud) represents cloud computing environments hosted and managed off-
premise or in public cloud environments, but dedicated resources are provisioned solely
for an organization’s private use.

The Intercloud (Cloud of Clouds)

The intercloud is not as much a deployment model as it is a concept based on the aggre-
gation of deployed clouds (Figure 8.1). Just like the Internet, which is a network of net-
works; intercloud refers to an inter-connected global cloud of clouds. Also like the World
Wide Web, intercloud represents a massive collection of services that organizations can
explore and consume.

From a services consumption perspective, we can look at the intercloud as an on-
demand SOA environment where useful services managed by other organizations can
be leveraged and composed. In other words, services that are outside of an organiza-
tion’s own boundaries and operated and managed by others can become a part of the
aggregate portfolio of services of those same organizations.

Deployment Models and Windows Azure

Windows Azure exists in a public cloud. Windows Azure itself is not made available as
a packaged software product for organizations to deploy into their own IT enterprises.
However, Windows Azure-related features and extensions exist in Microsoft’s on-prem-
ise software products, and are collectively part of Microsoft’s private cloud strategy. It
is important to understand that even though the software infrastructure that runs
Microsoft’s public cloud and private clouds are different, layers that matter to end-user
organizations, such as management, security, integration, data, and application are
increasingly consistent across private and public cloud environments.

Service Delivery Models

Many different types of services can be delivered in the various cloud deployment envi-
ronments. Essentially, any IT resource or function can eventually be made available as a
service. Although cloud-based ecosystems allow for a wide range of service delivery
models, three have become most prominent:

Infrastructure-as-a-Service (IaaS)

This service delivery model represents a modern form of utility computing and out-
sourced managed hosting. IaaS environments manage and provision fundamental com-
puting resources (networking, storage, virtualized servers, etc.). This allows consumers
to deploy and manage assets on leased or rented server instances, while the service
providers own and govern the underlying infrastructure.

210 Chapter 8: Cloud Services with Windows Azure

Microsoft

Yahoo

Oracle

Amazon

Google

IBM

Salesforce

Figure 8.1
Examples of how vendors establish a commercial intercloud.

8.1 Cloud Computing 101 211

Platform-as-a-Service (PaaS)

The PaaS model refers to an environment that provisions application platform resources
to enable direct deployment of application-level assets (code, data, configurations, poli-
cies, etc.). This type of service generally operates at a higher abstraction level so that
users manage and control the assets they deploy into these environments. With this
arrangement, service providers maintain and govern the application environments,

server instances, as well as the underlying infrastructure.

Software-as-a-Service (SaaS)

Hosted software applications or multi-tenant application services that end-users con-
sume directly correspond to the SaaS delivery model. Consumers typically only have
control over how they use the cloud-based service, while service providers maintain and
govern the software, data, and underlying infrastructure.

Other Delivery Models

Cloud computing is not limited to the aforementioned delivery models. Security, gov-
ernance, business process management, integration, complex event processing, infor-
mation and data repository processing, collaborative processes—all can be exposed as
services and consumed and utilized to create other services.

NOTE

Cloud deployment models and service delivery models are covered in
more detail in the upcoming book SOA & Cloud Computing as part of the
Prentice Hall Service-Oriented Computing Series from Thomas Erl. This
book will also introduce several new design patterns related to cloud-
based service, composition, and platform design.

IaaS vs. PaaS

In the context of SOA and developing cloud-based services with Windows Azure, we
will focus primarily on IaaS and PaaS delivery models in this chapter. Figure 8.2 illus-
trates a helpful comparison that contrasts some primary differences. Basically, IaaS rep-
resents a separate environment to host the same assets that were traditionally hosted
on-premise, whereas PaaS represents environments that can be leveraged to build and
host next-generation service-oriented solutions.

We interact with PaaS at a higher abstraction level than with IaaS. This means we man-
age less of the infrastructure and assume simplified administration responsibilities. But
at the same time, we have less control over this type of environment.

IaaS provides a similar infrastructure to traditional on-premise environments, but we
may need to assume the responsibility to re-architect an application in order to effec-
tively leverage platform service clouds. In the end, PaaS will generally achieve a higher
level of scalability and reliability for hosted services.

212 Chapter 8: Cloud Services with Windows Azure

applications

security & integration

runtimes

databases

servers

virtualization

server HW

storage

networking

applications

runtimes

databases

security & integration

applications

runtimes

server HW

virtualization

servers

databases

security & integration

storage

networking

virtualization

server HW

storage

networking

servers

private
(on-premise)

infrastructure
(as a service)

platform
(as a service)

yo
u

m
an

ag
e

yo
u

m
an

ag
e yo

u
m

an
ag

e

m
anaged

by
vendor

m
anaged

by
vendor

Figure 8.2
Common differentiations between delivery models.

IN PLAIN ENGLISH

An on-premise infrastructure is like having your own car. You have complete con-
trol over when and where you want to drive it, but you are also responsible for its
operation and maintenance. IaaS is like using a car rental service. You still have
control over when and where you want to go, but you don’t need to be concerned
with the vehicle’s maintenance. PaaS is more comparable to public transportation.
It is easier to use as you don’t need to know how to operate it and it costs less.
However, you don’t have control over its operation, schedule, or routes.

8.2 Windows Azure Platform Overview 213

SUMMARY OF KEY POINTS

• Cloud computing enables the delivery of scalable and available capabilities
by leveraging dynamic and on-demand infrastructure.

• There are three common types of cloud deployment models: public cloud,
private cloud, and community cloud.

• There are three common types of service delivery models: IaaS, PaaS, and
SaaS.

8.2 Windows Azure Platform Overview

The Windows Azure platform is an Internet-scale cloud computing services platform
hosted in Microsoft data centers. Windows tools provide functionality to build solutions
that include a cloud services operating system and a set of developer services. The key
parts of the Windows Azure platform are:

• Windows Azure (application container)

• Microsoft SQL Azure

• Windows Azure platform AppFabric

The Windows Azure platform is part of the
Microsoft cloud, which consists of multiple cate-
gories of services:

• cloud-based applications – These are services
that are always available and highly scalable.
They run in the Microsoft cloud that con-
sumers can directly utilize. Examples include
Bing, Windows Live Hotmail, Office Live,

etc.

• software services – These services are hosted
instances of Microsoft’s enterprise server
products that consumers can use directly.
Examples include Exchange Online, Share-
Point Online, Office Communications
Online, etc.

SOA PRINCIPLES & PATTERNS

The infrastructure and service
architectures that underlie many of
these native services (as well as
cloud-based services in general)
are based on direct combined
application of Stateful Services
[786] and Redundant Implementa-
tion [766]. This is made possible
by leveraging several of the built-in
extensions and mechanisms pro-
vided by the Windows Azure plat-
form (as explained in this chapter
and Chapter 16).

• platform services – This is where the Windows Azure platform itself is positioned. It
serves as an application platform public cloud that developers can use to deploy
next-generation, Internet-scale, and always available solutions.

• infrastructure services – There is a limited set of elements of the Windows Azure
platform that can support cloud-based infrastructure resources.

Figure 8.3 illustrates the service categories related to the Windows Azure platform.
Given that Windows Azure is itself a platform, let’s explore it as an implementation of
the PaaS delivery model.

214 Chapter 8: Cloud Services with Windows Azure

Platform Services

Application Services

Software Services

Infrastructure Services

SQL Azure AppFabric Live Services SharePoint Services Dynamics CRM
Services

Windows Azure

bing Windows Live Office Live HealthVault Advertising XBOX
Live

Exchange Online SharePoint Online OfficeCommunications
Online

Dynamics CRM
Online

Figure 8.3
A high-level representation of categories of services available in the Windows Azure cloud.

The Windows Azure platform was built from the ground up using Microsoft technolo-
gies, such as the Windows Server Hyper-V-based system virtualization layer. However,

the Windows Azure platform is not intended to be just another off-premise Windows
Server hosting environment. It has a cloud fabric layer, called the Windows Azure Fabric
Controller, built on top of its underlying infrastructure.

The Windows Azure Fabric Controller pools an array of virtualized Windows Server
instances into a logical entity and automatically manages the following:

• resources

• load balancing

• fault-tolerance

8.2 Windows Azure Platform Overview 215

• geo-replication

• application lifecycle

These are managed without requiring the hosted applications to explicitly deal with the
details. The fabric layer provides a parallel management system that abstracts the com-
plexities in the infrastructure and presents a cloud environment that is inherently elas-
tic. As a form of PaaS, it also supports the access points for user and application
interactions with the Windows Azure platform.

storage dynamic
tabular data blobs message

queues
distributed
file system

content
distribution

compute

data

connectivity

security

frameworks

application services

.NET

Service Bus

C/C++PHP PythonRuby VHDJava MySQL

data
synchronization

Transact-SQLADO.NET
ODBC, PHP

relational
database

on-premise
bridging

registry

federated
identities

claims-based
identity

declarative
policies

secure token
service

workflow
hosting

services
hosting

information
marketplace

application
marketplace

personal data
repository

Figure 8.4
An overview of common Windows Azure platform capabilities.

The Windows Azure platform essentially provides a set of cloud-based services that are
symmetric with existing mainstream on-site enterprise application platforms (Figure 8.4).

For example:

• storage services – a scalable distributed data storage system that supports many
types of storage models, including hash map or table-like structured data, large
binary files, asynchronous messaging queues, traditional file systems, and content
distribution networks

• compute services – application containers that support existing mainstream devel-
opment technologies and frameworks, including .NET, Java, PHP, Python, Ruby
on Rails, and native code.

• data services – highly reliable and scalable relational database services that also
support integration and data synchronization capabilities with existing on-
premise relational databases

• connectivity services – these are provided via a cloud-based service bus that can be
used as a message intermediary to broker connections with other cloud-based
services and services behind firewalls within on-premise enterprise environments

• security services – policy-driven access control services that are federation-aware
and can seamlessly integrate with existing on-premise identity management
systems

• framework services – components and tools that support specific aspects and
requirements of solution frameworks

• application services – higher-level services that can be used to support application
development, such as application and data marketplaces

All of these capabilities can be utilized individually or in combination.

Windows Azure (Application Container)

Windows Azure serves as the development, service hosting, and service management
environment. It provides the application container into which code and logic, such as
Visual Studio projects, can be deployed. The application environment is similar to exist-
ing Windows Server environments. In fact, most .NET projects can be deployed directly
without significant changes.

A Windows Azure instance represents a unit of deployment, and is mapped to specific
virtual machines with a range of variable sizes. Physical provisioning of the Windows
Azure instances is handled by the cloud fabric. We are required only to specify, by pol-
icy, how many instances we want the cloud fabric to deploy for a given service.

We have the ability to manually start and shut down instances, and grow or shrink the
deployment pool; however, the cloud fabric also provides automated management of
the health and lifecycles of instances. For example, in the event of an instance failure, the
cloud fabric would automatically shut down the instance and attempt to bring it back
up on another node.

Windows Azure also provides a set of storage services that consumers can use to store
and manage persistent and transient data. Storage services support geo-location and
offer high durability of data by triple-replicating everything within a cluster and across

216 Chapter 8: Cloud Services with Windows Azure

8.2 Windows Azure Platform Overview 217

data centers. Furthermore, they can manage
scalability requirements by automatically par-
titioning and load balancing services across
servers.

Also supported by Windows Azure is a VHD-
based deployment model as an option to
enable some IaaS requirements. This is prima-
rily geared for services that require closer inte-
gration with the Windows Server OS. This
option provides more control over the service
hosting environment and can better support
legacy applications.

SQL Azure

SQL Azure is a cloud-based relational data-
base service built on SQL Server technologies
that exposes a fault-tolerant, scalable, and
multi-tenant database service. SQL Azure
does not exist as hosted instances of SQL
Server. It also uses a cloud fabric layer to
abstract and encapsulate the underlying tech-
nologies required for provisioning, server
administration, patching, health monitoring,

and lifecycle management. We are only
required to deal with logical administration
tasks, such as schema creation and mainte-
nance, query optimization, and security
management.

A SQL Azure database instance is actually
implemented as three replicas on top of a
shared SQL Server infrastructure managed by
the cloud fabric. This cloud fabric delivers
high availability, reliability, and scalability
with automated and transparent replication

SOA PRINCIPLES & PATTERNS

Services deployed within Windows
Azure containers and made available
via Windows Azure instances establish
service architectures that, on the sur-
face, resemble typical Web service or
REST service implementations. How-
ever, the nature of the back-end pro-
cessing is highly extensible and
scalable and can be further subject to
various forms of Service Refactoring
[783] over time to accommodate
changing usage requirements. This
highlights the need for Windows Azure
hosted services to maintain the free-
dom to be independently governed
and evolved. This, in turn, places a
greater emphasis on the balanced
design of the service contract and its
proper separation as part of the overall
service architecture.

Specifically, it elevates the importance
of the Standardized Service Contract
(693), Service Loose Coupling (695),
and Service Abstraction (696)
principles that, through collective
application, shape and position service
contracts to maximize abstraction and
cross-service standardization, while
minimizing negative forms of consumer
and implementation coupling. Decou-
pled Contract [735] forms an expected
foundation for Windows Azure-hosted
service contracts, and there will gener-
ally be the need for more specialized
contract-centric patterns, such as
Validation Abstraction [792], Canonical
Schema [718], and Schema Central-
ization [769].

and failover. It further supports load-balancing of
consumer requests and the synchronization of
concurrent, incremental changes across the repli-
cas. The cloud fabric also handles concurrency
conflict resolutions when performing bi-direc-
tional data synchronization between replicas by
using built-in policies (such as last-writer-wins) or
custom policies.

Because SQL Azure is built on SQL Server, it pro-
vides a familiar relational data model and is
highly symmetric to on-premise SQL Server
implementations. It supports most features avail-
able in the regular SQL Server database engine
and can also be used with tools like SQL Server
2008 Management Studio, SQLCMD, and BCP, and SQL Server Integration Services for
data migration.

Windows Azure Platform AppFabric

In Chapter 7, as part of our coverage of .NET Enterprise Services, we introduced Win-
dows Server AppFabric. This represents the version of AppFabric that is local to the
Windows Server environment. Windows Azure platform AppFabric (with the word “plat-
form” intentionally not capitalized), is the cloud-based version of AppFabric that runs
on Windows Azure.

Windows Azure platform AppFabric helps connect services within or across clouds and
enterprises. It provides a Service Bus for connectivity across networks and organiza-
tional boundaries, and an Access Control service for federated authorization as a service.

The Service Bus acts as a centralized message broker in the cloud to relay messages
between services and service consumers. It has the ability to connect to on-premise serv-
ices through firewalls, NATs, and over any network topology.

Its features include:

• connectivity using standard protocols and standard WCF bindings

• multiple communication models (such as publish-and-subscribe, one-way
messaging, unicast and multicast datagram distribution, full-duplex bi-directional
connection-oriented sessions, peer-to-peer sessions, and end-to-end NAT
traversal)

218 Chapter 8: Cloud Services with Windows Azure

SOA PRINCIPLES & PATTERNS

In addition to reliability and scala-
bility improvements, SQL Azure’s
replication mechanism can be
used to apply Service Data Repli-
cation [773] in support of the Ser-
vice Autonomy (699) principle.
This is significant, as individual
service autonomy within cloud
environments can often fluctuate
due to the heavy emphasis on
shared resources across pools of
cloud-based services.

8.3 Windows Azure Roles 219

• service endpoints that are published and dis-
covered via Internet-accessible URLs

• global hierarchical namespaces that are DNS
and transport-independent

• built-in intrusion detection and protection
against denial-of-service attacks

Access Control acts as a centralized cloud-based
security gateway that regulates access to cloud-
based services and Service Bus communications,

while integrating with standards-based identity
providers (including enterprise directories such
as Active Directory and online identity systems
like Windows Live ID). Access Control and
other Windows Azure-related security topics are
covered in Chapter 17.

Unlike Windows Azure and SQL Azure, which are based on Windows Server and SQL
Server, Access Control Service is not based on an existing server product. It uses tech-
nology included in Windows Identity Foundation and is considered a purely cloud-
based service built specifically for the Windows Azure platform environment.

SUMMARY OF KEY POINTS

• The Windows Azure platform is primarily a PaaS deployed in a public cloud
managed by Microsoft.

• Windows Azure platform provides a distinct set of capabilities suitable for
building scalable and reliable cloud-based services.

• The overall Windows Azure platform further encompasses SQL Azure and
Windows Azure platform AppFabric.

8.3 Windows Azure Roles

A cloud service in Windows Azure will typically have multiple concurrent instances.
Each instance may be running all or a part of the service’s codebase. As a developer, you
control the number and type of roles that you want running your service.

SOA PRINCIPLES & PATTERNS

The Windows Azure Service Bus
complies to the familiar Enterprise
Service Bus [741] compound pat-
tern, and focuses on realizing this
pattern across network, security,
and organizational domains.

Service Bus also provides a serv-
ice registry to provide registration
and discovery of service metadata,
which allows for the application of
Metadata Centralization [754] and
emphasizes the need to apply the
Service Discoverability (702)
principle.

Web Roles and Worker Roles

Windows Azure roles are comparable to standard Visual Studio projects, where each
instance represents a separate project. These roles represent different types of applica-
tions that are natively supported by Windows Azure. There are two types of roles that
you can use to host services with Windows Azure:

• Web roles

• worker roles

Web roles provide support for HTTP and HTTPS through public endpoints and are
hosted in IIS. They are most comparable to regular ASP.NET projects, except for differ-
ences in their configuration files and the assemblies they reference.

Worker roles can also expose external, publicly facing TCP/IP endpoints on ports other
than 80 (HTTP) and 443 (HTTPS); however, worker roles do not run in IIS. Worker roles
are applications comparable to Windows services and are suitable for background
processing.

Virtual Machines

Underneath the Windows Azure platform, in an area that you and your service logic
have no control over, each role is given its own virtual machine or VM. Each VM is cre-
ated when you deploy your service or service-oriented solution to the cloud. All of these
VMs are managed by a modified hypervisor and hosted in one of Microsoft’s global data
centers.

Each VM can vary in size, which pertains to the number of CPU cores and memory. This
is something that you control. So far, four pre-defined VM sizes are provided:

• small – 1.7ghz single core, 2GB memory

• medium – 2x 1.7ghz cores, 4GB memory

• large – 4x 1.7ghz cores, 8GB memory

• extra large – 8x 1.7ghz cores, 16GB memory

Notice how each subsequent VM on this list is twice as big as the previous one. This sim-
plifies VM allocation, creation, and management by the hypervisor.

Windows Azure abstracts away the management and maintenance tasks that come
along with traditional on-premise service implementations. When you deploy your
service into Windows Azure and the service’s roles are spun up, copies of those roles are

220 Chapter 8: Cloud Services with Windows Azure

8.3 Windows Azure Roles 221

replicated automatically to handle failover (for example, if a VM were to crash because
of hard drive failure). When a failure occurs, Windows Azure automatically replaces
that “unreliable” role with one of the “shadow” roles that it originally created for your
service.

This type of failover is nothing new. On-premise service implementations have been
leveraging it for some time using clustering and disaster recovery solutions. However,

a common problem with these failover mechanisms is that they are often server-focused.
This means that the entire server is failed over, not just a given service or service
composition.

When you have multiple services hosted on a Web server that crashes, each hosted serv-
ice experiences downtime between the current server crashing and the time it takes to
bring up the backup server. Although this may not affect larger organizations with
sophisticated infrastructure too much, it can impact smaller IT enterprises that may not
have the capital to invest in setting up the proper type of failover infrastructure.

Also, suppose you discover in hindsight after performing the failover that it was some
background worker process that caused the crash. This probably means that unless you
can address it quick enough, your failover server is under the same threat of crashing.

Windows Azure addresses this issue by focusing on application and hosting roles. Each
service or solution can have a Web frontend that runs in a Web role. Even though each
role has its own “active” virtual machine (assuming we are working with single
instances), Windows Azure creates copies of each role that are physically located on one
or more servers. These servers may or may not be running in the same data center. These
shadow VMs remain idle until they are needed.

Should the background process code crash the worker role and subsequently put the
underlying virtual machine out of commission, Windows Azure detects this and auto-
matically brings in one of the shadow worker roles. The faulty role is essentially dis-
carded. If the worker role breaks again, then Windows Azure replaces it once more. All
of this is happening without any downtime to the solution’s Web role front end, or to
any other services that may be running in the cloud.

Input Endpoints

Web roles used to be the only roles that could receive Internet traffic, but now worker
roles can listen to any port specified in the service definition file. Internet traffic is
received through the use of input endpoints. Input endpoints and their listening ports are
declared in the service definition (*.csdef) file.

Keep in mind that when you specify the port for your worker role to listen on, Windows
Azure isn’t actually going to assign that port to the worker. In reality, the load balancer
will open two ports—one for the Internet and the other for your worker role. Suppose
you wanted to create an FTP worker role and in your service definition file you specify
port 21. This tells the fabric load balancer to open port 21 on the Internet side, open
pseudo-random port 33476 on the LAN side, and begin routing FTP traffic to the FTP
worker role.

In order to find out which port to initialize for the randomly assigned internal port,
use the RoleEnvironment.CurrentRoleInstance.InstanceEndpoints["FtpIn"].

IPEndpoint object.

Inter-Role Communication

Inter-Role Communication (IRC) allows multiple roles to talk to each other by exposing
internal endpoints. With an internal endpoint, you specify a name instead of a port num-
ber. The Windows Azure application fabric will assign a port for you automatically and
will also manage the name-to-port mapping.

Here is an example of how you would specify an internal endpoint for IRC:

222 Chapter 8: Cloud Services with Windows Azure

<ServiceDefinition xmlns=
"http://schemas.microsoft.com/ServiceHosting/2008/10/
ServiceDefinition" name="HelloWorld">
<WorkerRole name="WorkerRole1">
<Endpoints>
<InternalEndpoint name="NotifyWorker" protocol="tcp" />

</Endpoints>
</WorkerRole>

</ServiceDefinition>

Example 8.1

In this example, NotifyWorker is the name of the internal endpoint of a worker role
named WorkerRole1. Next, you need to define the internal endpoint, as follows:

RoleInstanceEndpoint internalEndPoint =
RoleEnvironment.CurrentRoleInstance.
InstanceEndpoints["NotificationService"];

this.serviceHost.AddServiceEndpoint(
typeof(INameOfYourContract),
binding,

8.4 Hello World in Windows Azure 223

You only need to specify the IP endpoint of the other worker role instances in order to
communicate with them. For example, you could get a list of these endpoints with the
following routine:

String.Format("net.tcp://{0}/NotifyWorker",
internalEndPoint.IPEndpoint));

WorkerRole.factory = new ChannelFactory<IClientNotification>(binding);

Example 8.2

var current = RoleEnvironment.CurrentRoleInstance;
var endPoints = current.Role.Instances
.Where(instance => instance != current)
.Select(instance => instance.InstanceEndpoints["NotifyWorker"]);

Example 8.3

IRC only works for roles in a single application deployment. Therefore, if you have mul-
tiple applications deployed and would like to enable some type of cross-application role
communication, IRC won’t work. You will need to use queues instead.

SUMMARY OF KEY POINTS

• Windows Azure roles represent different types of supported applications or
services.

• There are two types of roles: Web roles and worker roles.

• Each role is assigned its own VM.

8.4 Hello World in Windows Azure

The following section demonstrates the creation of a simple “Hello World” service in a
Windows Azure hosted application.

NOTE

If you are carrying out the upcoming steps with Visual Studio 2008, you
will need to be in an elevated mode (such as Administrator). A convenient
way of determining whether the mode setting is correct is to press the F5
key in order to enter debug mode. If you receive an error stating “the
development fabric must be run elevated,” then you will need to restart
Visual Studio as an administrator.

1. Create a Cloud Service Project

First you need to open the New Project window to create a new cloud service project
using VB.NET or C# (Figure 8.5).

224 Chapter 8: Cloud Services with Windows Azure

Also, ensure the following on your SQL Express setup:

• SQL Server Express Edition 2008 must be running under the ‘.\SQL-
EXPRESS’ instance

• your Windows account must have a login in .\SQLEXPRESS

• your login account is a member of the sysadmin role

If SQL Express isn’t configured properly, you will get a permissions error.

Figure 8.5
The New Project window.

2. Choose an ASP.NET Web Role

After you click OK on the New Project window, the New Cloud Service Project wizard
will start. You will then see a window (Figure 8.6) that will allow you to choose the type
of role that you would like as part of your service deployment.

For the Hello World project, you will only need the ASP.NET Web Role type. Once you
select this role, you can choose the role name.

8.4 Hello World in Windows Azure 225

3. Create the Solution

After clicking OK, the wizard will generate the solution, which you can then view using
the Solution Explorer window (Figure 8.7).

Figure 8.6
The New Cloud Service Project window.

Figure 8.7
The HelloWorld solution structure displayed in the Solution Explorer window.

4. Instantiate the Service

Now you can open the Default.aspx
file using the Solution Explorer win-
dow, put “Hello, Cloud!” in the Body
element and press F5 to run. You
should see something like what is
shown in Figure 8.8.

This example was executed locally on
IIS. If we were to deploy this service
into the Windows Azure cloud, it
would still be running in IIS because
it is hosted in a Web role.

226 Chapter 8: Cloud Services with Windows Azure

Figure 8.8
The HelloWorld service in action.

SOA PRINCIPLES & PATTERNS

Mainstream SOA design patterns and service-
orientation principles can be applied to Win-
dows Azure-hosted services very similarly to
how they are applied to internal enterprise-
hosted services. Furthermore, Windows Azure-
hosted services support different service
implementation mediums (such as Web services
and REST services) and allow for the same serv-
ice to be accessed via multiple protocols. This
supports the creative application of specialized
patterns, such as Concurrent Contracts [726]
and Dual Protocols [739].

SUMMARY OF KEY POINTS

• The development environment for Windows Azure is fully integrated into
Visual Studio, which provides a simulated runtime for Windows Azure for
local desktop-based development and unit testing.

• Creating and deploying cloud-based services with Windows Azure is simpli-
fied using available wizards and development UIs.

8.5 A Web Service in Windows Azure 227

8.5 A Web Service in Windows Azure

In this section example, we take a closer look at a Web service that is deployed to Win-
dows Azure in order to better understand the code-level impacts of moving a service to
a cloud.

Let’s assume we moved a service contact interface definition and a data contract into a
custom C# project. We choose ServiceClient to test our service and ServiceDemo con-
tains the Windows Azure application configuration and definition files.

We further opt to host this project in a Web role, which means that there is a little bit of
bootstrapping that needs to be done. The WebRole class inherits from the RoleEntry-
Point class, which contains methods that are used by Windows Azure to start or stop
the role. You can optionally override those methods to manage the initialization or shut-
down process of your role. Worker roles must extend RoleEntryPoint, but it is optional
for Web roles. The Visual Studio tools will automatically extend this class for you, as you
can see from the WebRole.cs code:

using System.Linq;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;
using System.Diagnostics;
namespace ServiceDemo_WebRole
{
public class WebRole : RoleEntryPoint
{
public override bool OnStart()
{
DiagnosticMonitor.Start("DiagnosticsConnectionString");
RoleEnvironment.Changing += RoleEnvironmentChanging;
Trace.TraceInformation("WebRole starting...");
return base.OnStart();

}
private void RoleEnvironmentChanging(object sender,
RoleEnvironmentChangingEventArgs e)

{
if (e.Changes.Any(change => change is
RoleEnvironmentConfigurationSettingChange))

{
e.Cancel = true;

}
}

}
}

Example 8.4

Our cloud service project includes two configuration files: ServiceDefinition.csdef and
ServiceConfiguration.cscfg. These files are packaged together with the cloud service
when it is deployed to Windows Azure.

The ServiceDefinition.csdef file contains the metadata needed by the Windows Azure
environment to understand the requirements of the service, including the roles it
contains. It also establishes configuration settings that will be applied to all specified
service roles:

228 Chapter 8: Cloud Services with Windows Azure

<ServiceDefinition name="ServiceDemo" xmlns=
"http://schemas.microsoft.com/ServiceHosting/2008/10/
ServiceDefinition">
<WebRole name="ServiceDemo_WebRole">
<InputEndpoints>
<InputEndpoint name=
"HttpIn" protocol="http" port="80" />

</InputEndpoints>
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString" />

</ConfigurationSettings>
</WebRole>

</ServiceDefinition>

Example 8.5

The ServiceConfiguration.cscfg file sets values for the configuration settings defined in
the service definition file and specifies the number of instances to run for each role. Here
is the ServiceConfiguration.cscfg for the ServiceDemo service project:

<ServiceConfiguration serviceName="ServiceDemo"
xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceConfiguration">
<Role name="ServiceDemo_WebRole">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString"
value="UseDevelopmentStorage=true" />

</ConfigurationSettings>
</Role>

</ServiceConfiguration>

Example 8.6

8.5 A Web Service in Windows Azure 229

The Instances element tells the Windows Azure runtime fabric how many instances to
spin up for the ServiceDemo_WebRole role. By default, Visual Studio tools set this to ”1”,

but this is generally not a good idea. If you only have one role running and it crashes, it
could take a while before Windows Azure spins up another one. However, if you had
multiple roles and one goes down, the application wouldn’t experience a work stop
while a new instance is being generated. This is why it is a good practice to have at least
two role instances per role.

In the ConfigurationSettings section, there is a statement worth singling out:

<Setting name="DiagnosticsConnectionString"
value="UseDevelopmentStorage=true" />

Example 8.7

There is a set of logging and diagnostic APIs that you can use to instrument your code
and provide better traceability. With these APIs, you can not only detect and trou-
bleshoot problems, but you can also gain insight into the overall performance of an
application.

This line of code passes in the configuration setting name that is equal to the connection
string for the storage account that the Diagnostic Monitor needs to use to store the diag-
nostic data. By default, the setting name is DiagnosticsConnectionString, but you
can name it whatever you like as long as the name matches up with the service defini-
tion and service configuration files.

In the WebRole.cs, you will see the following statement:

DiagnosticMonitor.Start("DiagnosticsConnectionString");

Example 8.8

This line of code starts up the Diagnostic Monitor when the role starts. By default, the
connection string is set to use development storage, such as the SQL table that was cre-
ated when the SDK was installed. Before you deploy the service to the Windows Azure
cloud, you will need to update this setting with the storage account name and account
key information.

For example:

If we take a look at the Web role’s Web.Config file, we’ll also see that the project wizard
automatically created the following:

230 Chapter 8: Cloud Services with Windows Azure

<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString"
value="DefaultEndpointsProtocol=https;AccountName=
[ACCOUNT NAME};AccountKey=[ACCOUNT KEY]" />

</ConfigurationSettings>

Example 8.9

<system.diagnostics>
<trace>
<listeners>
<addtype="Microsoft.WindowsAzure.Diagnostics.
DiagnosticMonitorTraceListener,
Microsoft.WindowsAzure.Diagnostics, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"
name="AzureDiagnostics">
<filter type=""/>

</add>
</listeners>

</trace>
</system.diagnostics>

Example 8.10

This creates a tracing listener for the diagnostic monitor, which means that we continue
to use the System.Diagnostics.Trace class for instrumentation. The diagnostic mon-
itor will just hook into those calls and push them into storage.

The following examples show the IOrderService interface contract and the Order data
contract, followed by the final output:

namespace Contract
{
[ServiceContract]
public interface IOrderService
{
[OperationContract]
int CreateOrder(Order o);
[OperationContract]
void UpdateOrder(string id, Order o);
[OperationContract]

8.5 A Web Service in Windows Azure 231

Order GetOrderByOrderId(string id);
[OperationContract]
List<Order> GetOrdersByCustomer(string custName);
[OperationContract]
List<Order> GetOrders();
[OperationContract]
void DeleteOrder(string id);

}
}

Example 8.11

namespace Contract
{
[DataContract(Namespace=
"http://example.cloudapp.net/servicedemo/1.0")]
public class Order
{
[DataMember]
public int OrderId { get; set; }
[DataMember]
public string OrderItem { get; set; }
[DataMember]
public string CustomerName { get; set; }

}
}

Example 8.12

namespace ServiceDemo_WebRole
{
[ServiceBehavior(InstanceContextMode =
InstanceContextMode.Single,
AddressFilterMode =
AddressFilterMode.Any)]

public class OrderService : Contract.IOrderService
{
int id = 0;
List<Order> Orders = new List<Order>();
#region IOrderService Members
int IOrderService.CreateOrder(Order o)
{
o.OrderId = ++id;
Orders.Add(o);
return o.OrderId;

Note that the InstanceContextMode setting is set to to single because we want to use
the same service object instance across the communication session established between
the service and its consumer. In a real world scenario, you would choose a more robust
solution like SQL Azure or Windows Azure table storage (covered later in this chapter).

Let’s briefly walk through the steps required to actually deploy the service to Windows
Azure.

232 Chapter 8: Cloud Services with Windows Azure

}
void IOrderService.UpdateOrder(string id, Order o)
{
var first = Orders.First(order =>
order.OrderId ==
Convert.ToInt64(id));

first = o;
}
List<Order> IOrderService.GetOrders()
{
return Orders;

}
void IOrderService.DeleteOrder(string orderId)
{
Orders.RemoveAll(order =>
order.OrderId.Equals
(Convert.ToInt64(orderId)));

}
Order IOrderService.GetOrderByOrderId(string orderId)
{
return Orders.First(o =>
o.OrderId.Equals(Convert.ToInt64(orderId)));

}
public List<Order> GetOrdersByCustomer(string custName)
{
return (string.IsNullOrEmpty(custName))?
Orders : Orders.FindAll(o =>
o.CustomerName.Equals(custName));

}
#endregion

}
}

Example 8.13

8.5 A Web Service in Windows Azure 233

1. Create a Host Service and Storage Service

When you create a storage service, you have to create a globally unique storage account
name, not to be confused with the overarching Windows Azure account that is mapped
to your Windows LiveID. For our example, we chose juggercloud as the account name
and received three storage endpoints. Two access keys are also generated.

Before we deploy our Web service, however, we will update the Web role service con-
figuration *.cscfg file with the account name and account key information, as follows:

<ServiceConfiguration serviceName="StandardMoldHost"
xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceConfiguration">
<Role name="ServiceDemo_WebRole">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString"
value="DefaultEndpointsProtocol=https;
AccountName=standardmold;AccountKey=0lg82Oj...==" />

</ConfigurationSettings>
</Role>

</ServiceConfiguration>

Example 8.14

2. Create and Deploy a Service Package

We deploy the service by uploading a package through the Windows Azure portal.
When using the Windows Azure UI, we can navigate to the host service to determine
whether we are deploying to staging or production.

There’s really no difference in hardware resource configuration between these two set-
tings. In fact, the separation between the two environments is managed through the net-
work load balancer’s routing tables.

Once we click “Deploy,” the package and configuration file will be uploaded.

NOTE

We could have also pulled these bits from a Windows Azure storage
account. For example, we could create a custom MSBuild task leveraged
within a Team Foundation Server Team Build definition file. Instead of
dropping the package to a normal file drop, this would upload it into blob
storage using the REST API, or perhaps even leverage Windows Azure
Drive.

3. Promote the Service to Production

Let’s imagine the previous step initially deployed the service to staging so that we could
test it before moving it into the production enviroment. The Windows Azure UI allows
you to invoke the service by clicking “Run,” resulting in a page similar to Figure 8.9.

234 Chapter 8: Cloud Services with Windows Azure

Figure 8.9

After verifying that the Web service is performing as desired, it can be deployed to pro-
duction (Figure 8.10).

Figure 8.10

8.6 A REST Service in Windows Azure 235

8.6 A REST Service in Windows Azure

In order to explore how REST services are created and exist within Windows Azure, this
section takes the Web service from the previous section and makes it RESTful. But,
before we dive into the implementation details of this change, let’s first take a step back
and think about REST-specific design considerations.

REST Service Addressing

A common design practice with REST services is to make the addressing (the manner in
which target resources are addressed) as intuitive as possible. The social bookmarking
site Delicious is a great example of this.

With Delicious, every bookmark has one or more tags (think of tags as categories). Tags
essentially replace folders within Web browsers with categories. In relation to our dis-
cussion, you can also group tags into a bundle, which basically creates “tag clouds.”
Access to tagged bookmarks is provided via REST services. Table 8.1 shows a set of sam-
ple URLs that can be used to get back a list of bookmarks for Azure, SOA, and
Azure+SOA, respectively.

URL Description

http://delicious.com/tag/azure returns a list of bookmarks that have been
tagged with Azure

http://delicious.com/tag/soa returns a list of bookmarks that have been
tagged with SOA

http://delicious.com/tag/soa+azure returns a list of bookmarks that have been
tagged with SOA and Azure

Table 8.1
Sample URLs used to retrieve different values from REST services at delicious.com.

What’s important about this example is that we are able to search, create and update a
large network of data via REST without writing code. The HTTP GET method and the
appropriate URLs are all we need.

Returning to our Order service, we first need to define an appropriate resource address-
ing structure for the order data, as shown in Table 8.2.

Action
IOrderService
Operation Name

URI Address
Template

HTTP
Method

get a list of all orders GetOrders ./orders GET

get an order given
the order ID

GetOrderByOrderId ./order/{id} GET

get a list of orders
for a given customer

GetOrdersByCustomer ./orders/{custName} GET

create an order CreateOrder ./orders POST

update an order UpdateOrder ./order/{id} PUT

delete an order DeleteOrder ./order/{id} DELETE

236 Chapter 8: Cloud Services with Windows Azure

Table 8.2
The resource addressing structure for the Order service.

Creating a Windows Azure REST Service

We now need to carry out a series of steps to make this a REST service:

1. Add a reference to System.ServiceModel.Web in the Contract project.

2. Add HTTP attributes to the methods defined in the IOrderService interface.

3. Update the WCF behavior.

4. Update the OrderService.svc file by adding a Web factory reference.

The System.ServiceModel.Web namespace contains classes that make up the Web
HTTP programming model.

For our purposes, we need to focus on the following:

• WebGetAttribute (maps to an HTTP GET)

• WebInvokeAttribute (maps to HTTP POST, PUT, and DELETE)

• WebMessageFormat (defines the format of the response message)

For the GET method, we use the WebGet attribute. We then use the UriTemplate attrib-
ute to define the addressing structure from Table 8.2. This is a manual process, which
means that it’s easy to make mistakes. It is therefore important to lay out the URI struc-
ture prior to working with the code.

8.6 A REST Service in Windows Azure 237

We also need to specify the {token} parameters. For example, if we were calling the
GetOrderByOrderId operation of the Web service via SOAP, we would just pass in the
order ID argument by calling the Web method. But with REST, everything is through
HTTP methods and URIs. The service consumer doesn’t call GetOrderByOrderId
directly, but rather does the HTTP GET method on http://server/OrderService.svc/
order/2, where “2” is the order ID value.

Next, we need to determine the response message format by setting ResponseFormat to
return XML messages.

Here’s what IOrderService looks like now:

[ServiceContract]
public interface IOrderService
{
[WebInvoke(Method="POST",
UriTemplate="orders",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]
int CreateOrder(Order o);
[WebInvoke(Method="PUT",
UriTemplate="order/{id}",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]
void UpdateOrder(string id, Order o);
[WebGet(UriTemplate="order/{id}",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]
Order GetOrderByOrderId(string id);
[WebGet(UriTemplate="orders/{custName}",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]
List<Order> GetOrdersByCustomer(string custName);
[WebGet(UriTemplate="orders",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]
List<Order> GetOrders();
[WebInvoke(Method="DELETE",
UriTemplate="order/{id}",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]
void DeleteOrder(string id);

}

Example 8.15

We now need to update the WCF behavior in the Web.Config file by changing the end-
point binding to WebHttpBinding and the endpoint behavior to a Web behavior, as
shown here:

238 Chapter 8: Cloud Services with Windows Azure

<services>
<servicebehaviorConfiguration=
"ServiceDemo_WebRole.ServiceDemoBehavior"
name="ServiceDemo_WebRole.OrderService">
<endpoint address="" binding="WebHttpBinding"
contract="Contract.IOrderService"
behaviorConfiguration="Web">

</endpoint>
</service>

</services>
<behaviors>
<endpointBehaviors>
<behavior name="Web" />

</endpointBehaviors>
<serviceBehaviors>
<behavior name=
"ServiceDemo_WebRole.ServiceDemoBehavior">

</serviceBehaviors>
</behaviors>

Example 8.16

Finally, we have to update the OrderService.svc file to include WebServiceHostFac-
tory, as shown here:

<%@
ServiceHost Language="C#" Debug="true"
Service="ServiceDemo_WebRole.OrderService"
CodeBehind="OrderService.svc.cs"
Factory="System.ServiceModel.
Activation.WebServiceHostFactory"

%>

Example 8.17

8.7 Windows Azure Storage 239

WebServiceHostFactory provides in-
stances of WebServiceHost in managed
hosting environments, where the host
instance is created dynamically in
response to incoming messages. This is
necessary because the service is being
hosted using a Web role in IIS.

Finally, to deploy the REST version of
the Order service to Windows Azure, we can follow the same steps described in the pre-
vious A Web Service in Windows Azure section.

SUMMARY OF KEY POINTS

• Programming models and deployment processes for Web services are very
similar and consistent between cloud-based services in Windows Azure
and on-premise services in Windows Server.

• Most significant differences with cloud-based services in Windows Azure
are managed via service configurations.

• Development and deployment of REST-based services in Windows Azure
are also consistent with the on-premise platform.

8.7 Windows Azure Storage

Windows Azure provides the following set of storage services (collectively referred to as
Windows Azure Storage), each of which is suitable for different types of data access
requirements:

• Tables provide structured storage, as they do in regular databases. Essentially, each
table consists of a set of data entities that each contain a set of properties.

• Queues provide reliable storage and delivery of messages. They are often used
between roles to communicate with each other.

• Blobs are used to store large binary objects (files). They provide a simple interface
for storing named files along with metadata and include support for CDN
(Content Delivery Network).

• Windows Azure Drives provide durable NTFS volumes for Windows Azure
applications.

SOA PRINCIPLES & PATTERNS

Cloud-based REST service architecture
relates to several SOA design patterns rele-
vant to REST service design. These are cov-
ered separately in the book SOA with REST
as part of the Prentice Hall Service-Oriented
Computing Series with Thomas Erl.

Windows Azure Storage supplies a managed API and a REST API, both of which essen-
tially provide the same level of functionality. The managed API is provided through the
Microsoft.WindowsAzure.StorageClient namespace. To interact with the storage serv-
ices, you can also use familiar programming interfaces, such as ADO.NET Data Services
(available in the .NET framework version 3.5 SP1).

Note that access to storage is regulated via Windows Azure Storage accounts that use
256-bit secret keys. Also, there are some storage size limitations. For example, each stor-
age account will have a maximum 100 terabytes of total storage capacity.

Tables

Windows Azure Tables (WATs) are similar to relational tables insofar as they both are
used to store structured data. However, it’s important to understand that WAT storage
is not a relational database management system for the cloud (that’s what SQL Azure is
for). In other words, there is no support for common database features, such as joins,

aggregates, stored procedures, or indexes.

WATs were built primarily to realize scalability, availability, and durability of data. Indi-
vidual tables can be scaled to billions of entities (rows) with data totaling into the order
of terabytes. Part of the scaling algorithm is that as application traffic and usage grows,

WATs will automatically scale out to potentially tens, to hundreds, to thousands of
servers. With regards to availability, each WAT is replicated at least three times.

Entities and Properties

Windows Azure Storage introduces some specific terminology and relationships for
WATs:

• You create a storage account, each of which can have multiple tables.

• Data stored within a table is organized into entities. A database row is comparable
to an entity.

• Each entity contains a set of properties. A database column is comparable to a
property.

• A table is comprised of a set of entities, each of which is comprised of a set of
properties.

Each entity contains two key properties that together form the unique ID of the entity in
that table. The first key is the PartitionKey, which allows you to group entities together.

240 Chapter 8: Cloud Services with Windows Azure

8.7 Windows Azure Storage 241

This tells the Windows Azure Storage system to not split this group up when scaling out
the table.

In other words, partition keys are used to group table entities into partitions that pro-
vide a unit of scale that Windows Azure Storage uses to properly load balance data. Par-
tition keys also allow you to control the physical locality of the entity data. Everything
within a partition will live on a single server.

The second key is the RowKey, which provides uniqueness within a partition in that the
PartitionKey together with the RowKey uniquely identify a given entity (as well as the
sort order). You can think of these two keys as a clustered index for a table.

The third required attribute is the Timestamp, which is a read-only attribute used to con-
trol optimistic concurrency. That is, if you try to update a row that another program has
already updated, your update attempt will fail because of the timestamp mismatch.

Data Access

When interacting with entities and properties, you are provided the full range of regu-
lar data access functions (get, insert, update, delete), in addition to special features, such
as the partial update (merge), the entire update (replace), and the entity group transaction.

Entity group transactions allow you to atomically perform multiple insert, update,

and delete commands over a set of entities in the same partition as part of a single
transaction.

Queues

As with traditional messaging queues, the Windows Azure queues provide a reliable
intermediary mechanism for delivering messages. For example, a common scenario is
to set up a queue as the communication proxy between an application’s Web role (of
which there may be one or two instances) and its worker roles (of which there can be
many instances). For this scenario you would likely set up at least two queues. The first
would allow the Web role to submit messages for the worker roles to process. The
worker roles would poll the queue for new messages until one is received. The second
queue would then be for the worker roles to communicate back to the Web role. This
architecture allows the Web role to delegate and spread out resource-intensive work to
the worker roles.

Just like with tables, queues are scoped by the storage account that you create. An
account can have many queues, each of which can contain an unlimited amount of

messages. Also, dequeued counts are tracked, allowing you to determine how often a
given message has been dequeued by a worker process.

Queues offer a range of data access functions, including the ability to create, delete, list,
and get/set queued metadata. Additionally, you can add (enqueue) and retrieve
(dequeue) sets of messages, and delete and “peek” at messages individually.

Blobs

Each storage account can have containers that can be used to store blobs. There is no
limit to the number of containers that you can have as long as they will fit into your stor-
age account limit.

Containers have the ability to set public or private access policies. The private access
level will only allow access to consumers that have been given permission. Public access
allows any consumer to interact with the container’s blobs using a URL. You can also
have container metadata, which, like blob metadata, is stored in name-value pairs.

You have two choices for the type of blob that you can use: block and page. Both types
have characteristics that make them applicable to specific requirements.

Block Blobs

A block blob is primarily geared towards streaming media files. Each blob is organized
into a sequential list of “blocks” that can be created and uploaded out of order and in
parallel for increased performance. Once uploaded, each block is in an uncommitted
state, meaning that you cannot access the blob until its blocks are committed. To commit
the blocks as well as define the correct block order, you use the PutBlobList command.

Each block is immutable and is further defined by a block ID. After you have success-
fully uploaded a block, that block (identified by its block ID) cannot be changed. That
also means that if you have updated a block on-premise, then you will need to re-upload
or copy the entire block with the same block ID.

Blobs can be accessed via an available REST API that provides standard data access
operations, as well as special functions, such as CopyBlob that allows you to copy an
existing blob to a new blob name.

242 Chapter 8: Cloud Services with Windows Azure

8.7 Windows Azure Storage 243

Page Blobs

Page blobs are suitable for random I/O operations. With this kind of blob, you must first
pre-allocate space (up to 1TB), wherein the blob is divided into 512-byte “pages.” To
access or update a page, you must address it using a byte offset. Another key difference
is that changes to page blobs are immediate.

You can expand the blob size at any point by increasing its maximum size setting. You
are also allowed to shrink the blob by truncating pages. You can update a page in one of
two ways: PutPage or ClearPage. With PutPage, you specify the payload and the range of
pages, whereas ClearPage basically zeroes out a page range up to the entire blob. There
are several other commands that can be used to work with page blobs.

Windows Azure Drive

Windows Azure Drive is a storage service that provides a durable NTFS volume for
Windows Azure applications. An application needs to mount the volume prior to using
it and, when done, the application then unmounts the same volume. Throughout this
period, the volume data is kept intact, even if the application should crash.

A Windows Azure Drive volume is actually a page blob. Specifically, it exists as a page
blob that has been formatted as an NTFS single volume virtual hard drive (VHD). As
such, these drives can be up to 1TB in size.

SUMMARY OF KEY POINTS

• Windows Azure Storage provides a set of services for distributed cloud-
based data storage.

• The four types of storage services provided are tables, queues, blobs, and
Windows Azure Drive.

• Windows Azure Storage services are available via both .NET managed
APIs and REST-based APIs.

	Cover Image
	Title Page
	Chapter 2

