

Web Service Contract Design
and Versioning for SOA

Thomas Erl, Anish Karmarkar, Priscilla Walmsley,
Hugo Haas, Umit Yalcinalp, Canyang Kevin Liu,

David Orchard, Andre Tost, James Pasley

PRENTICE HALL

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO

NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID

CAPETOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

Erl_00FM.qxd 8/9/08 11:14 AM Page v

Chapter 12: Advanced XML Schema Part I: Message Flexibility, and Type Inheritance and
Composition

Chapter 13: Advanced XML Schema Part II: Reusability, Derived Types, and Relational
Design

Chapter 14: Advanced WSDL Part I: Modularization, Extensibility, MEPs, and Asynchrony

Chapter 15: Advanced WSDL Part II: Message Dispatch, Service Instance Identification,
and Non-SOAP HTTP Binding

Chapter 16: Advanced WS-Policy Part I: Policy Centralization and Nested, Parameterized,
and Ignorable Assertions

Chapter 17: Advanced WS-Policy Part II: Custom Policy Assertion Design, Runtime
Representation, and Compatibility

Chapter 18: Advanced Message Design Part I: WS-Addressing Vocabularies

Chapter 19: Advanced Message Design Part II: WS-Addressing Rules and Design
Techniques

Part II

Advanced Service Contract Design

Erl_Pt2.qxd 7/30/08 3:08 PM Page 1

16.1 Reusability and Policy Centralization

16.2 Nested and Parameterized Assertions

16.3 Ignorable Assertions

16.4 Concurrent Policy-Enabled Contracts

Chapter 16

Advanced WS-Policy Part I: Policy
Centralization and Nested,
Parameterized, and Ignorable
Assertions

Erl_16.qxd 8/7/08 9:55 AM Page 1

Though a simple and small language, WS-Policy allows for complex representations
of policies. This chapter explores new design-time options for building sophisti-

cated policy expression structures and entire policy definition architectures, and also
discusses the implications of these designs by runtime processors.

16.1 Reusability and Policy Centralization

We concluded Chapter 10 with a look at policies that are embedded within a WSDL def-
inition and also attached to policy subjects. Those embedded policy expressions can be
reused within the scope of a WSDL definition by having multiple wsp:PolicyRefer-
ence elements reference the same wsp:Policy construct via its name, wsu:Id or xml:Id
attribute.

We can consider this a form of intra-document reuse, where the scope of reusability is
limited to one WSDL definition. In this section, we will be exploring the physical
centralization of policy expressions into separate policy documents that we’ll refer to as
policy definitions.

NOTE

The following sections focus on the “controlled reuse” of policies within
pre-defined service inventory boundaries. While this is a common
approach to sharing policies across WSDL definitions, it does not pre-
clude you from simply reusing policies to whatever extent you choose,
regardless of centralization considerations.

Policy Centralization and Policy Definitions

As you might recall, you can establish many-to-many relationships between WSDL def-
initions and XML schemas where one XML schema is reused (imported or included)
within multiple WSDL definitions, and/or a single WSDL definition can reference and
pull in content from multiple XML schemas. This flexibility allows you to establish a
Web service contract architecture that can leverage and foster reuse.

Similar reuse opportunities are available when exploring relationships between WSDL
definitions and policy definitions. In fact, grouping common policy expressions within

Erl_16.qxd 8/7/08 9:55 AM Page 2

16.1 Reusability and Policy Centralization 3

separate policy definition documents is the basis of an SOA design pattern called Policy
Centralization, which we explain shortly.

In Chapter 14 we introduced the notion of creating reusable schemas that contained
common types. Some of those types were limited to a domain (like the purchasing-spe-
cific types in the Purchasing Common schema), while others were useful on a global
basis (such as with the generic types in the Common schema).

When it comes to creating physically separate policy definition documents, we have the
same options, as follows:

Domain Policy Definition

You can create policy expressions that apply to a subset of the services within a given
service inventory. These policies are still reusable because they are applicable to multi-
ple Web service contracts, but they are limited in scope to a particular domain. As with
creating domain-specific common schema types, domain-level policies are often also
related to a business domain. However, it is up to you to create your own domains based
on whatever requirements you have. For example, you could establish a policy domain
specific to a transport protocol.

NOTE

In the upcoming case study example, we will be creating a domain policy
definition that contains policy expressions for the purchasing domain only.

Global Policy Definitions

Global policies are expected to apply to all services within a particular governance
boundary. Therefore, global policy definitions often contain very broad and generalized
policy expressions.

The scope implied by the use of the term “global” depends on the scope of the underly-
ing service inventory. As explained early on in Chapter 3, you can establish pools of
services (service inventories) that are independently standardized and governed. Some-
times, an inventory is enterprise-wide, whereas other times it only represents a domain
within the enterprise.

In the latter case, a global policy definition would be applicable to just the scope of the
domain inventory. A domain policy definition would then apply to a subset of the serv-
ice contracts within the domain inventory. So again, when we call a policy definition
“global,” we mean that it is global within one service inventory boundary only.

Erl_16.qxd 8/7/08 9:55 AM Page 3

Policy Centralization

This pattern (which is similar in concept to the Schema Centralization pattern) simply
advocates creating the domain and global policy definitions we just described. It results
in a system whereby policies can be consistently enforced across several Web service
contracts. This reduces redundant policy content within a service inventory and further
allows policies to be centrally maintained.

An added benefit is that the policy documents can more easily be owned by custodians
that do not necessarily have to be involved with the governance of the WSDL defini-
tions. This type of freedom is conducive to evolving technical policies in tandem with
actual business policies and also provides policy custodians the option to use their own,
preferred tools.

4 Chapter 16: Advanced WS-Policy Part I

NOTE

You can also look into creating policies that span multiple domain service
inventories. This may or may not be a good idea, depending on how com-
plex the architecture becomes and also on the governance impact this
may result in. However, if this is something you do decide to explore, you
can further qualify these types of polices as “master global policies” or
just “master policies.”

NOTE

The techniques in this section can also be applied to WSDL definition-
specific policies. Instead of embedding non-reusable policy expressions
within WSDL documents, you can also isolate them in separate policy def-
inition documents to allow them to be maintained in a physically separate
file.

Designing External WS-Policy Definitions

Several approaches exist for establishing a relationship between a WSDL definition doc-
ument and a separate WS-Policy definition document. However, not all approaches are
supported by all vendor platforms, and some platforms may not support external pol-
icy reuse at all. Therefore, it is very important that you investigate the environment in
which you plan to deploy external policy definitions before deciding on any of the tech-
niques described in the upcoming sections.

Erl_16.qxd 8/7/08 9:55 AM Page 4

16.1 Reusability and Policy Centralization 5

Policy Processors

Unlike XML and WSDL processors that are widely established, runtime programs that
perform WS-Policy-specific processing have not been formally defined and their behav-
ior can therefore vary across vendor platforms. In some cases, it may be a dedicated
event-driven agent that carries policy processing out, whereas other times this logic may
exist as an extension of the overall Web services toolkit and runtime platform. It’s there-
fore helpful to keep this in mind whenever you see the term “policy processing” used in
this book.

Using the wsp:PolicyAttachment Element

A common means of sharing policy expression code is to place into its own WS-Policy
definition via the wsp:PolicyAttachment element, as shown here:

<wsp:PolicyAttachment>
...
<wsp:Policy>
<wsam:Addressing/>
<wsrmp:RMAssertion optional=”true”/>

</wsp:Policy>
</wsp:PolicyAttachment>

Example 16.1
A wsp:PolicyAttachment construct containing a policy expression. This code presumably resides in a sepa-
rate policy definition document.

Here we can see that the wsp:PolicyAttachment construct simply wraps around an
existing policy expression. The ellipsis at the top indicates room for any of the following
additional child elements:

• wsp:AppliesTo – This element is used to indicate what part of the WSDL docu-
ment the policy expression applies to.

• wsp:Policy or wsp:PolicyReference – These elements have been previously
explained. As child elements to wsp:PolicyAttachment, they designate the spe-
cific policy expression that will be applied to the policy subject identified in the
wsp:AppliesTo element.

The content of a wsp:AppliesTo element can be any element. This makes the external
referencing mechanism quite powerful in that you can technically target any part of a

Erl_16.qxd 8/7/08 9:55 AM Page 5

WSDL definition. This element uses a further wsp:URI element that allows for the iden-
tification of the target element via a URL statement.

In the following example we’ve populated the wsp:PolicyAttachment construct with
wsp:AppliesTo and wsp:URI child elements that indicate that the policy expression at
the bottom of the wsp:PolicyAttachment construct will be applied to the endpoint ele-
ment of the WSDL 2.0 binding for the Purchase Order service.

6 Chapter 16: Advanced WS-Policy Part I

<wsp:PolicyAttachment>
<wsp:AppliesTo>
<wsp:URI>
http://actioncon.com/purchaseOrder.wsdl20
#wsdl.endpoint(PurchaseOrderService/Endpoint)

</wsp:URI>
</wsp:AppliesTo>
<wsp:Policy>
<wsam:Addressing/>
<wsrmp:RMAssertion optional=”true”/>

</wsp:Policy>
</wsp:PolicyAttachment>

Example 16.2
The wsp:AppliesTo and wsp:URI child elements with a URL that identifies the target element of the policy.

NOTE

A key architectural consideration with this approach is that it places con-
trol of what WSDL definitions and subjects the policy applies to in the
hands of the policy definition owner. This differs from upcoming alterna-
tives where policies exist in separate documents but their application is
determined within WSDL definitions instead.

Using the wsp:PolicyURIs Attribute

An alternative attachment method documented in the WS-Policy specification is the use
of the wsp:PolicyURIs attribute which can simply be added (as an extensibility attrib-
ute) to any valid policy attachment point within a WSDL definition, as shown here:

Erl_16.qxd 8/7/08 9:55 AM Page 6

16.1 Reusability and Policy Centralization 7

In this example, the ptPurchaseOrder portType element is attached to the policies
residing in the commonPolicies.xml document. Note that the wsp:PolicyURIs attribute
can contain a list of URI addresses that point to multiple physically separate policy def-
inition documents.

Using the Name and URI Attributes

The WS-Policy language provides a Name attribute that allows you to assign a separate
ID value to a wsp:Policy element specifically for external references. Even though this
attribute is called “Name,” the value needs to be an IRI.

A wsp:PolicyReference element located in a separate document (most likely a WSDL
definition) can then point to the external policy expression via a URI attribute that is pop-
ulated with the same value as the wsp:Policy element’s Name attribute.

So let’s imagine that the following policy expression is located in a document called
commonPolicies.xml:

<portType name=”ptPurchaseOrder”
wsp:PolicyURIs=”custom:commonPolicies.xml”>
<operation name=”opSubmitOrder”>
<input message=”tns:msgSubmitOrderRequest”/>
<output message=”tns:msgsubmitOrderResponse”/>

</operation>
...

</portType>

Example 16.3
The portType element is extended with the wsp:PolicyURIs attribute.

<wsp:Policy Name=”http://actioncon.com/policies/common”>
<wsam:Addressing/>

</wsp:Policy>

Example 16.4
A wsp:Policy construct residing within a separate policy definition document. The Name attribute provides the
policy expression with an externally “referenceable” identifier.

The value of the Name attribute gives this wsp:Policy construct a reference ID that can
be used by wsp:PolicyReference elements to point to and reuse the policy expression.

Erl_16.qxd 8/7/08 9:55 AM Page 7

For example, the following wsp:PolicyReference statement may reside in a WSDL def-
inition document:

8 Chapter 16: Advanced WS-Policy Part I

<wsp:PolicyReference
URI=”http://actioncon.com/policies/common”/>

Example 16.5
A wsp:PolicyReference element that points to the previously displayed wsp:Policy construct via the URI
attribute.

Wrapping Policies Within WSDL Definitions

An alternative means of creating common policy definition documents is to place the
reusable policy expressions into a separate WSDL definition document. This is by no
means an “official” approach documented in the WS-Policy specifications, but should
instead be considered a possible workaround if support for the preceding techniques is
not provided by your platform.

With this approach, you may be able to simply use the existing WSDL import or
include elements to pull in the contents of the external WSDL document containing the
policy expressions.

In this case, you would place the policy expression within a WSDL definitions con-
struct as follows:

NOTE

The mechanics behind performing the actual inclusion of the policy
expression into the WSDL definition is up to your runtime and service
hosting platform. If you intend to use this approach, be sure to confirm
that your policy processors support these attributes. You may also want to
consider using (or you may be required to use) XPointer to enable cross-
document inclusion.

<definitions targetNamespace=
“http://actioncon.com/policies/common”>
<wsp:Policy wsu:Id=”addressing-policy”>
<wsam:Addressing/>

</wsp:Policy>
...

</definitions>

Example 16.6
A WSDL definitions construct that acts as a container for common policies.

Erl_16.qxd 8/7/08 9:55 AM Page 8

16.1 Reusability and Policy Centralization 9

As shown here, you can optionally assign the WSDL definition its own target namespace
value.

NOTE

In this case we used the value assigned to the wsp:Policy element’s
Name attribute from the previous example as the target namespace value.
However, this is just incidental. You can create whatever namespace
value you like.

Within the WSDL definition that needs to pull in this policy, you can then add a standard
WSDLimport element that points to the WSDL definition acting as the policy definition,
as follows:

<definitions targetNamespace=
“http://actioncon.com/contract/PurchaseOrder” ...>
<import
namespace=”http://actioncon.com/policies/common”
location=”http://actioncon.com/policies/common”/>

...
<wsp:PolicyReference URI=”#addressing-policy”/>
...

</definitions>

Example 16.7
An example of a WSDL definition that includes a wsp:PolicyReference statement that points to an imported
wsp:Policy construct. If you check back to the Attaching Policies to WSDL Definitions section from Chapter 10,
you can see that this code resembles the same syntax used for local references within a WSDL document.

Note how the wsp:Policy element from Example 16.6 does not use a Name attribute.
This is because it is not expecting to be externally referenced. Via the WSDL import
mechanism, the policy expression is brought into the WSDL definition and then refer-
enced as though it was a local part of the document. This is also why the URI attribute
of the wsp:PolicyReference element contains only a local pointer (based on the con-
vention of using the hash mark: “#”).

NOTE

One potential problem with this approach is the enforcement of the “unique-
ness” of the wsp:Policy element’s xml:Id or wsu:Id attribute value
across multiple WSDL documents. If this issue cannot be resolved by your
platform, the use of XML Include or XPointer may need to be considered.

Erl_16.qxd 8/7/08 9:55 AM Page 9

10 Chapter 16: Advanced WS-Policy Part I

CASE STUDY EXAMPLE

Soon after refining his Web service contracts with some of the more advanced XML
Schema and WSDL features, Steve is called into a meeting with the Kevin, the CEO,
and Donna, the president of ActionCon.

This meeting concerns Steve. It’s unusual to have a formal meeting with Kevin, and
he hasn’t even met Donna yet. His first thought is that his department is being down-
sized and Steve begins to think about how he should update his resume as he heads
toward the meeting room.

However, his fears soon disappear when he hears the news. Apparently, there have
been some recent security breaches resulting in stolen corporate financial data and
one attempted malicious attack on the ActionCon data warehouse that was luckily
caught and countered in time.

As a result of these events, Steve is told that all Web services that handle financial data
must be fully secured and must also require that outside consumers comply with the
use of certain security options. Steve is informed that an external security consulting
company has been hired to perform an audit and that they will soon be providing him
with a list of requirements that will impact the design of his Web services.

Subsequent to the meeting, Steve begins to re-investigate the use of the WS-Policy
framework. In his previous work with policies (from Chapter 10), Steve successfully
attached a policy to one of his Web service contracts. But given the scope of the
upcoming security requirements, he now turns his attention to establishing a cen-
tralized policy architecture, the initial draft of which is displayed in Figure 16.1.

He knows that there will be the need for security policies that affect Web services that
process financial information. As shown on the right side of Figure 16.1, he establishes
a logical finance domain that will be supported by a domain policy definition comprised
of policy expressions that will apply to all Web services that handle financial data. Cur-
rently, both his Purchase Order and Invoice services would fall within this domain.

The following example shows a basic skeleton outline of the policy expression that
will reside in the financePolicies.xml document:

<wsp:Policy Name=”http://actioncon.com/policies/finance”>
<!— finance-related policy assertions —>

</wsp:Policy>

Example 16.8
The start of a domain policy definition containing finance-related assertions.

Erl_16.qxd 8/7/08 9:55 AM Page 10

UKNOOKR
Highlight

16.1 Reusability and Policy Centralization 11

wsp:PolicyReference

purchase
Order.wsdl

game WSDL
namespace

game.wsdl

purchase order
WSDL namespace

invoice WSDL
namespace

invoice.wsdl

finance
Policies.xml

common
Policies.xml

wsp:PolicyReference

wsp:PolicyReference

wsp:PolicyReference

Figure 16.1
A domain policy definition (right) associated with finance-related Web services, and a global policy definition
(left) providing common policies that apply to all services.

NOTE

The contents of the financePolicies.xml domain policy definition are devel-
oped in the upcoming Case Study Example: Nested and Parameterized
Assertions section.

Erl_16.qxd 8/7/08 9:55 AM Page 11

Common Policy Centralization Challenges

In order to facilitate such a centralized policy architecture, a number of considerations
need to be taken into account, several of which might impose significant challenges
upon an IT department:

• New governance processes are required to ensure that global and domain policy
definitions are maintained and to further guarantee that changes to these policies
will not negatively impact any of the Web service contracts they apply to.

• Standard processes are required for project teams to reliably obtain domain and
global WS-Policy definition documents. This means that a discovery process
ordinarily geared toward WSDL documents will now need to extend to WS-Policy
definitions.

• Conflicts may exist between overlapping policies, such as when a global policy
introduces a constraint that is contrary to a constraint provided by a domain-level
policy. These conflicts need to be taken into account whenever new domain or
global polices are added or modified.

• One centralization challenge related in particular to the use of the WS-PolicyAt-
tachment mechanism is that the infrastructure needs to know where to get the

12 Chapter 16: Advanced WS-Policy Part I

As indicated by the left side of his policy centralization architecture, Steve decides
that he might as well also establish a global policy definition that will provide gen-
eral policy expressions that apply to all Web services within his planned inventory.

Based on a recent enterprise design standard handed down by the CTO, Steve
already knows that one global policy will be to require that all Web service contracts
contain an assertion that requires consumer programs to support WS-Addressing
headers. Therefore, his initial policy expression for the commonPolicies.xml global
policy definition looks like this:

<wsp:Policy Name=”http://actioncon.com/policies/common”>
<wsam:Addressing/>

</wsp:Policy>

Example 16.9
By virtue of the fact that this simple policy expression is part of a global policy definition, it is expected to extend all
Web service contracts within Steve’s planned service inventory.

Erl_16.qxd 8/7/08 9:55 AM Page 12

16.1 Reusability and Policy Centralization 13

policies from. Often, a middleware platform, such as an ESB, is required (as
explained shortly).

Finally, as mentioned in the previous section, not all service runtime platforms support
external referencing to WS-Policy definitions that exist as standalone XML documents.
Without robust support for sharing policies, it is difficult to achieve meaningful
centralization.

NOTE

An additional design-related challenge to achieving a centralized policy
architecture is knowing in advance where to attach policies to. Because
policies can be associated with different attachment points within different
policy subjects, it’s impossible to know ahead of time what a domain or
global policy will apply to. When manually maintaining policy-enabled
WSDL definitions in a centralized architecture, one approach is to “pre-
attach” a wsp:PolicyReference element to some or all potential
attachment points in a WSDL definitions construct and for most of
these elements to initially point to empty policy expressions (wsp:Policy
constructs with no assertions).

This establishes a relationship between the WSDL document and a series
of centralized policy definition documents and allows policy custodians to
add new expressions without having to revisit the WSDL definitions. How-
ever, this is not a common or recommended practice. It can result in an
awkward architecture, and in some environments, it may add runtime pro-
cessing cycles as the platform hosting the Web services may try to
resolve and check for external policies that aren’t there each time the
service is invoked. Furthermore, conflicts can arise when empty and non-
empty policies are combined across policy attachment points.

Policy Centralization and ESBs

Several platforms (especially those provided by modern Enterprise Service Bus prod-
ucts) are equipped with built-in support for policy centralization. You simply fill out a
form to associate a centralized policy expression with your services, and the platform
takes care of the rest. This can be an extremely convenient and powerful means of
achieving an effective centralized policy architecture; however, it often comes with the
trade-off that your Web service contracts must form dependencies on proprietary fea-
tures that may be difficult to move away from if you ever want to change or diversify
your service inventory architecture.

Erl_16.qxd 8/7/08 9:55 AM Page 13

SUMMARY OF KEY POINTS

• Policy expressions can be isolated into policy definition documents that
can be shared and reused across WSDL documents, just like XML Schema
definitions.

• One approach involves using the wsp:Policy element’s Name attribute
to establish an externally referenceable identifier. However, you need to
ensure that the service inventory architecture supports this type of external
references.

• Another approach is to create policy definition documents as WSDL defini-
tions that are then imported into other WSDL definitions. This technique
can be used when there is insufficient product support for regular external
references.

16.2 Nested and Parameterized Assertions

In Chapter 10 we covered simple assertions, operators, and expressions. In this section,
we’ll take a look at how these parts can be further combined and extended. Specifically,
we’ll explore how policy expressions can be nested within each other and how they can
be designed to accept and respond to parameter data provided by the consumer.

Nested Policy Assertions

Policy assertions can be structured around parent-child relationships whereby a child
policy assertion is nested within a parent assertion. As shown in the following example,
assertion ex:Assertion2 is nested within ex:Assertion1:

14 Chapter 16: Advanced WS-Policy Part I

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<ex:Assertion1>
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<ex:Assertion2/>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>
</ex:Assertion1>

Erl_16.qxd 8/7/08 9:55 AM Page 14

16.2 Nested and Parameterized Assertions 15

So, why would you want to nest a policy assertion? There’s a simple, two-part answer.

An assertion needs to be nested when:

• the behavior of the nested assertion is dependent on the parent assertion (or vice
versa), and/or

• the parent and child assertions apply to the same targets (attachment points)

Sometimes a policy assertion will be defined to extend an existing assertion. In this case,
it will likely need to be nested within the existing assertion because it is directly depend-
ent on the assertion it is extending. Furthermore, for this type of structure to make sense,
both parent and child assertions need to be targeting the same policy subject within the
WSDL definition.

As you may have noticed in the previous sample code, the syntax requirement for nest-
ing assertions is that the child assertion be wrapped in its own wsp:Policy construct.
You may be wondering why this is actually required.

For example, why can’t you just do this:

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

Example 16.10
One assertion nested within another.

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All>
<ex:Assertion1>
<ex:Assertion2/>

</ex:Assertion1>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

Example 16.11
An attempt at nesting an assertion that does not result in an actual, nested assertion.

Erl_16.qxd 8/7/08 9:55 AM Page 15

The reason the approach in this example doesn’t result in a nested assertion has to do
with how runtime policy processors work. (Specifically, this is related to how these
processors perform “policy matching.”) The policy processor looks for the wsp:Policy
element and when it finds it, it only cares about the first assertion element it encounters.

To the processor, ex:Assertion1 represents the policy assertion and it has no interest in
what lies within the ex:Assertion1 construct (unless there happens to be a nested
wsp:Policy or wsp:PolicyReference element). Therefore, to communicate to the
processor that there are actually two separate policy assertions, we need to add two sep-
arate wsp:Policy constructs (as we did in Example 16.10).

Parameterized Assertions

Even though we just dismissed Example 16.11 as not representing a nested policy, it does
actually demonstrate another important type of policy structure. Because the ex:Asser-
tion2 element is not its own policy, it is considered a parameter of ex:Assertion1. This
means that whatever part of the runtime environment will be responsible for processing
the ex:Assertion1 policy will receive the value of ex:Assertion2 as input.

There are, of course, other ways to create parameterized assertions. In fact, we pre-
viewed one in Chapter 10. You might recall the following example:

16 Chapter 16: Advanced WS-Policy Part I

<wsp:Policy>
<argt:responseGuarantee>
<argt:responseInMilliseconds>
50

</argt:responseInMilliseconds>
</argt:responseGuarantee>

</wsp:Policy>

Example 16.12
A parameterized argt:responseGuarantee policy assertion.

In this case, all of the contents of the argt:responseGuarantee construct are considered
parameters. Given that this is a custom policy assertion (not one that originated with an
industry standard), there will need to be custom service logic that processes these
parameters at runtime. Also, development tools will likely not be able to check for pol-
icy compatibility using these custom assertions.

Let’s now check out a more detailed case study example with both nested and parame-
terized policy assertions based on industry standards.

Erl_16.qxd 8/7/08 9:55 AM Page 16

16.2 Nested and Parameterized Assertions 17

NOTE

Unlike nested assertions for which support is quite common, not all plat-
forms provide support for parameterized assertions.

CASE STUDY EXAMPLE

Nested and Parameterized WS-SecurityPolicy Assertions

NOTE

The following case study example makes references to the WS-Security
and WS-SecurityPolicy languages, which are not explained in this book.
You do not need to be familiar with these standards to understand this
example. You can ignore the security-related terminology and just focus
on the highlighted assertions that demonstrate nested and parameterized
structures. (If you are interested in learning more about this standard, be
sure to visit www.soaspecs.com.)

Note also that in this example we will use the sp: prefix to represent
assertions that are defined in the WS-SecurityPolicy specification.

Earlier (in Chapter 14) Steve was told that there were insufficient funds to establish
the infrastructure to support a WS-Security framework. Due to the recent security
breaches, establishing this framework has now become a priority.

Specifically, the security audit carried out by the external consultants produces the
following security requirements that affect all Web services that process financial
data:

• Consumers must now access all Web services using transport or message-level
security.

• For transport-level security, Web services need to be accessed via SSL with
transport-level tokens.

• For message-level security, Web services need to be accessed using X509 tokens
for authentication and all messages must be signed and encrypted.

In response to these requirements, Steve decides to design a policy alternative for his
newly created domain policy definition that gives consumers a choice between using
either transport- or message-level security. He uses two pre-defined assertions from
the WS-SecurityPolicy language to express these options, as follows:

Erl_16.qxd 8/7/08 9:55 AM Page 17

18 Chapter 16: Advanced WS-Policy Part I

<wsp:Policy Name=”http://actioncon.com/policies/finance”>
<wsp:ExactlyOne>
<sp:TransportBinding/>
<sp:SymmetricBinding/>

</wsp:ExactlyOne>
</wsp:Policy>

Example 16.13
The policy expression from the domain policy definition now comprised of a policy alternative offering a choice between
two security-related assertions.

Steve looks at his newly created policy expression and thinks to himself, “It can’t be
that easy…” He begins reading the WS-SecurityPolicy specification and soon finds
out that it isn’t.

He discovers that for both assertions additional properties need to be defined. For
example, ActionCon requires a specific transport token (https) for transport level
security which relies on timestamps to be present in the security header of a SOAP
envelope. Additionally, a specific algorithm suite (Basic264) for cryptography needs
to be supported.

All of these required properties are defined as three additional nested assertions as
per the highlighted parts of this example:

<wsp:Policy Name=”http://actioncon.com/policies/finance”>
<wsp:ExactlyOne>
<sp:TransportBinding>
<wsp:Policy>
<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken>
...tokens...

</sp:HttpsToken>
</wsp:Policy>

</sp:TransportToken>
<sp:IncludeTimestamp/>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>

</wsp:Policy>
</sp:AlgoritmSuite>

</wsp:Policy>

Erl_16.qxd 8/7/08 9:55 AM Page 18

16.2 Nested and Parameterized Assertions 19

</sp:TransportBinding>
...

</wsp:Policy>

Example 16.14
The sp:TransportBinding policy assertion containing three nested policy assertions.

Steve now turns his attention to the sp:SymmetricBinding assertion that represents
the message-level security alternative. This assertion actually contains seven nested
assertions within three nested wsp:Policy layers, as follows:

<wsp:Policy Name=”http://actioncon.com/policies/finance”>
<wsp:ExactlyOne>
...
<sp:SymmetricBinding>
<wsp:Policy>
<sp:ProtectionToken>
<wsp:Policy>
<sp:X509Token sp:IncludeToken=
“http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/IncludeToken/Never”>
<wsp:Policy>
...details of X509 token...

</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:ProtectionToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>

</wsp:Policy>
</sp:AlgorithmSuite>
<sp:Layout>
...layout details...

</sp:Layout>
<sp:IncludeTimestamp/>
<sp:OnlySignEntireHeadersAndBody/>

</wsp:Policy>
</sp:SymmetricBinding>

</sp:ExactlyOne>
</wsp:Policy>

Example 16.15
The sp:SymmetricBinding policy assertion containing seven nested policy assertions.

Erl_16.qxd 8/7/08 9:55 AM Page 19

As a result of this exercise, all of the nested assertions required to fully provide the two
security-related policy alternatives are established. But what about parameterized asser-
tions? Some of the nested assertions shown in the previous example are, in fact, also
parameterized.

This next example displays the entire policy expression with both policy alternatives.
The highlighted parts represent parameters for parameterized assertions:

20 Chapter 16: Advanced WS-Policy Part I

<wsp:Policy Name=”http://actioncon.com/policies/finance”>
<wsp:ExactlyOne>
<sp:TransportBinding>
<wsp:Policy>
<sp:TransportToken/>
<wsp:Policy>
<sp:HttpsToken>
...tokens...

</sp:HttpsToken>
</wsp:Policy>

</sp:TransportToken>
<sp:IncludeTimestamp/>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>

</wsp:Policy>
</sp:AlgoritmSuite>

</wsp:Policy>
</sp:TransportBinding>
<sp:SymmetricBinding>
<wsp:Policy>
<sp:ProtectionToken>
<wsp:Policy>
<sp:X509Token sp:IncludeToken=
“http://schemas.xmlsoap.org/ws/2005
/07/securitypolicy/IncludeToken/Never”>
<wsp:Policy>
...details of X509 token...

</wsp:Policy>
</sp:X509Token>

</wsp:Policy>
</sp:ProtectionToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>

</wsp:Policy>
</sp:AlgorithmSuite>

Erl_16.qxd 8/7/08 9:55 AM Page 20

16.3 Ignorable Assertions 21

The italicized text shows where some of the parameter data would be placed, but for
simplicity’s sake it’s been omitted. Note how the sp:X509Token element incorporates
assertion parameters via attributes. How parameter data is defined and represented
within a given assertion depends solely on the design of the underlying policy assertion
type.

SUMMARY OF KEY POINTS

• Policy expressions can be nested within each other, thereby allowing for the
creation of complex constructs with multiple policy assertions.

• When policy assertion elements are nested or contain data values deter-
mined at runtime, the policy is considered to be parameterized.

16.3 Ignorable Assertions

No part of the WS-Policy language has resulted in as much debate as the use of ignor-
able assertions. In a nutshell, this feature allows you to express a behavior of a Web serv-
ice as an assertion that consumer programs can simply choose to disregard.

Here’s what an ignorable assertion looks like:

<sp:Layout>
...layout details...
</sp:Layout>
<sp:IncludeTimestamp/>
<sp:OnlySignEntireHeadersAndBody/>

</wsp:Policy>
</sp:SymmetricBinding>

</sp:ExactlyOne>
</wsp:Policy>

Example 16.16
A policy expression comprised of two security-related policy alternatives.

<wsp:Policy>
<custom:TraceMessage wsp:Ignorable=”true”/>

</wsp:Policy>

Example 16.17
A policy expression containing an ignorable policy assertion.

Erl_16.qxd 8/7/08 9:55 AM Page 21

In this little example, custom:TraceMessage represents a custom assertion, but the set-
ting of wsp:Ignorable=”true” makes consumer-side processing of the assertion purely
voluntary, meaning that consumers don’t need to perform extra processing in order to
communicate with the service.

To better understand this attribute, let’s begin by comparing it to the wsp:Optional
attribute we introduced in Chapter 10.

wsp:Ignorable vs. wsp:Optional

As you might recall, the wsp:Optional attribute can also be used to label a policy asser-
tion as not being required. How then is wsp:Ignorable different from wsp:Optional?
The difference between these two attributes has to do with the types of assertions they
are applied to.

Applying the wsp:Optional Attribute

The wsp:Optional attribute is generally used as a form of “short hand” to define the
equivalent of a policy alternative that offers the consumer a choice of whether to process
an assertion or not process anything at all.

Therefore, this attribute tends to communicate to the consumer that:

“You can choose to comply with the assertion and do the corresponding pro-
cessing, or you can choose not to and then no assertion-related processing will
occur.”

A good example of this is when a technology is supported by a Web service, but its use
is not mandatory by all consumers, as follows:

22 Chapter 16: Advanced WS-Policy Part I

<wsp:Policy>
<wsam:Addressing wsp:Optional=”true”/>

</wsp:Policy>

Example 16.18
A policy assertion with the wsp:Optional attribute.

In this case, the Web service indicates that it supports WS-Addressing headers, but con-
sumers don’t need to use them if they don’t want to.

Erl_16.qxd 8/7/08 9:55 AM Page 22

16.3 Ignorable Assertions 23

Applying the wsp:Ignorable Attribute

What the wsp:Ignorable is most often used to communicate about a Web service is
some behavior that will be carried out, regardless of whether the consumer program
acknowledges or processes it.

In other words, this attribute conveys to the consumer that:

“By the way, you should be aware of the fact that the Web service will be doing
this thing regardless of whether or not you will do anything in response to it.”

The custom:TraceMessage assertion example we provided at the beginning of this sec-
tion is appropriate for this attribute. It basically states that incoming messages from the
consumer will be traced either way.

Other common applications for this attribute include:

• communicating messaging-related behaviors (stating that messages are being
logged or that message details will be retained in memory as state data)

• communicating assurances (such as response time or availability guarantees, or
promising non third-party or intermediary involvement)

In fact, you can express anything you like with ignorable assertions. However, this
feature does need to be used with caution. See the Considerations for Using Ignorable
Assertions section for some guidelines.

What About Using wsp:Optional and wsp:Ignorable Together?

Here’s a brain teaser. The wsp:Ignorable attribute is supposed to indicate assertion
behavior that will always occur, while the wsp:Optional attribute is intended to indi-
cate that an assertion behavior does not have to occur.

So what happens when we create an assertion like this:

<wsp:Policy>
<custom:TraceMessage
wsp:Ignorable=”true”
wsp:Optional=”true”/>

</wsp:Policy>

Example 16.19
A policy assertion with both wsp:Ignorable and wsp:Optional attributes.

Erl_16.qxd 8/7/08 9:55 AM Page 23

A good way to understand the implications of this is to reorganize the assertion into a
set of policy alternatives, as follows:

24 Chapter 16: Advanced WS-Policy Part I

<wsp:Policy>
<wsp:exactlyOne>
<wsp:All>
<custom:TraceMessage wsp:Ignorable=”true”/>

</wsp:All>
<wsp:All/>

</wsp:exactlyOne>
</wsp:Policy>

Example 16.20
The policy expression from Example 16.19 is restructured into a policy alternative.

What we end up with is a policy alternative with no required assertions, which is very
similar to just using the wsp:Optional attribute on its own. Therefore, this combination
is usually considered inappropriate unless the underlying runtime platform provides
some proprietary processing that requires the presence of these two attributes or unless
there are requirements that the wsp:Ignorable attribute be added simply for commu-
nication purposes.

NOTE

Another difference between how these two attributes are processed
relates to the use of the normal form, which is explained in the upcoming
Normalization section of this chapter. The wsp:Optional attribute is not
retained after the normal form is applied (because it is turned into an
alternative), whereas the wsp:Ignorable attribute remains part of the
normal form, as an attribute of the assertions.

Incidentally, when we restructured the policy expression from Example
16.19 into the policy alternative displayed in Example 16.20, we applied
normalization.

Using wsp:Ignorable to Target Consumers

Because it is the consumer program’s responsibility to either ignore or understand and
respond to ignorable assertions, you can use this feature to provide policy assertions
that are specifically targeted to different types of consumers. This is especially useful
when creating custom policy assertions that not all consumers will understand.

Erl_16.qxd 8/7/08 9:55 AM Page 24

16.3 Ignorable Assertions 25

For example, you may have an agnostic Web service that gets reused a lot as part of dif-
ferent service compositions. A new composition may require that the service express an
assurance that communicates its availability to other services, as follows:

<wsp:Policy>
<custom:Available wsp:Ignorable=”true”>
<start>5:00</start>
<end>23:00</end>

</custom:Available>
</wsp:Policy>

Example 16.21
A parameterized instance of an ignorable policy assertion that states that the Web service is available between 5 AM
and 11 PM.

This allows those other services (which act as consumers when they invoke your Web
service) to first check the availability assurance assertion prior to attempting invocation.

In this example, the use of the custom:Available assertion is only required by that one
service composition. All of the other compositions and solutions that reuse the Web serv-
ice to automate different business processes may not understand or require knowledge
of this assertion. And, most importantly, even though the assertion was added well after
the Web service has been in production, because it is ignorable, its presence has no effect
on any of the existing service consumers (disregarding the fact that consumers who
attempt to access this service between 11:00 PM and 5:00 AM will certainly be affected).

CASE STUDY

Adding an Ignorable Domain Policy Expression

Another recommendation that was part of the security audit report (explained in ear-
lier examples) was that all incoming messages containing financial data be logged.
These logs will provide a valuable record of service usage and can help trace back
any attempted attacks or misuse of a Web service. As an added bonus, the logged
data can further be used for diagnostic purposes, fault detection, and will also help
provide usage statistics.

When first hearing of this new requirement, Steve boldly asks, “Why can’t we just
add logging functionality to the service logic without having to advertise it in the
service contract?” It’s a valid point, thinks Steve, especially considering that this
functionality is supposed to be added for security purposes.

Erl_16.qxd 8/7/08 9:55 AM Page 25

Considerations for Using Ignorable Assertions

You can use the wsp:Ignorable attribute as an extension to the Web service contract to
communicate pretty much anything you want about a Web service, but that doesn’t nec-
essarily always make it a good idea.

As with any part of a Web service contract, you need to respect the Service Loose Cou-
pling design principle to avoid inadvertently allowing implementation details to make
their way into the WSDL definition.

26 Chapter 16: Advanced WS-Policy Part I

The security consultants inform Steve that they would like nothing more than to see
the logging function be added transparently in the background. However, other
ActionCon architects have pointed out that certain service consumer programs some-
times need to send messages with highly sensitive data. In these cases, these con-
sumers require the option of not accessing a Web service that logs incoming messages.

Steve now gets the picture and proceeds to expand his original finance domain pol-
icy definition with the ignorable custom:LogMessage assertion, as follows:

<wsp:Policy Name=”http://actioncon.com/policies/finance”
...>
<wsp:All>
<custom:LogMessage wsp:Ignorable=”true”/>
<wsp:ExactlyOne>
<sp:TransportBinding>
...

</sp:TransportBinding>
<sp:SymmetricBinding>
...

</sp:SymmetricBinding>
</sp:ExactlyOne>

</wsp:All>
</wsp:Policy>

Example 16.22
The ignorable custom:LogMessage assertion is added to the finance domain policy definition from the previous
case study example.

With this ignorable assertion in place, it is now up to consumer programs to check for
its existence to determine whether they want to send a Web service within the finance
domain a message or not.

Erl_16.qxd 8/7/08 9:55 AM Page 26

16.3 Ignorable Assertions 27

For example, an ignorable assertion like this:

<wsp:Policy>
<custom:MyDatabaseIsDB2 wsp:Ignorable=”true”/>

</wsp:Policy>

Example 16.23
An ignorable policy assertion of questionable value.

…is just not a good idea. Even if there was an immediate requirement to communicate
the underlying database product to consumers, using the technical interface is the last
place you’d want to do it.

This is an extreme example of a negative type of coupling called Contract-to-
Implementation coupling. The problem this leads to is that consumer programs may be
developed to bind and process these very implementation-specific assertions, and as
soon as you change the implementation, a change to the assertion name will impact the
consumers.

Of course, you could parameterize this assertion as follows:

<wsp:Policy>
<custom:Database wsp:Ignorable=”true”>
DB2

</custom:Database>
</wsp:Policy>

Example 16.24
A parameterized version of the preceding policy assertion.

…but again, following the Service Loose Coupling principle (as well as the Service
Abstraction principle), implementation details should really be kept private.

There will certainly be less controversial usages for this attribute for which you may be
tempted to express configuration, environmental, or deployment characteristics of a
Web service.

The number one question you need to raise when considering any of these types of
assertions is: “What are the governance implications?” In other words, you need to
weigh how useful an ignorable assertion may be to consumers against the impact of hav-
ing to maintain and perhaps change this assertion in the future.

Erl_16.qxd 8/7/08 9:55 AM Page 27

SUMMARY OF KEY POINTS

• A policy assertion can be tagged as “ignorable” in order to communicate
that the assertion that will be in effect does not need to be acknowledged
by the consumer.

• Ignorable assertions are primarily used for information purposes to convey
to consumers that a certain type of processing will occur on the service-
side, regardless of whether the consumer performs any special processing
in response to the assertion.

• Ignorable assertions are different from optional assertions and the
wsp:Ignorable attribute is almost never used together with the
wsp:Optional attribute.

16.4 Concurrent Policy-Enabled Contracts

The Concurrent Contract design pattern provides a design option whereby the same
underlying service logic can expose two or more different contracts. When services are
built as Web services, this pattern is more easily implemented because of the fact that
Web service contracts are physically decoupled from their underlying implementation.

When designing policy alternatives for Web service contracts, you can end up with some
very complex and elaborate structures. While these may be justified, it is worth under-
standing that you can also apply the Concurrent Contracts pattern as a means of estab-
lishing multiple Web service contracts that each express a policy expression (or perhaps
a subset of the overall policy alternatives). In other words, creating multiple contracts
may be a viable alternative to policy alternatives.

One reason in particular to consider this approach is when a Web service needs to
accommodate both trusted and non-trusted consumer programs. You, as the service
owner, may not want to expose a detailed set of policy alternatives to the non-trusted

28 Chapter 16: Advanced WS-Policy Part I

NOTE

When maintaining policies using proprietary vendor platform features, you
may be required to create various types of ignorable assertions (or these
assertions may be created for you automatically by the vendor tools) that
do express implementation details. This is especially the case when most
consumers (which, of course, can also be Web services) are being built
and deployed in the same vendor environment. Be sure to assess the
long-term impact of using proprietary features before committing to them.

Erl_16.qxd 8/7/08 9:55 AM Page 28

16.4 Concurrent Policy-Enabled Contracts 29

consumers because some of the alternative policy expressions may include private or
business-related assertions that should only be made available to trusted parties.

NOTE

You can consider the approach of having concurrent policies as a spe-
cialized implementation of the Concurrent Contracts design pattern.

In the Case Study Example: Split Concrete Descriptions Sharing the Same Abstract Description
section from Chapter 14, we demonstrated how two different WSDL concrete descrip-
tions each imported the same abstract description for reuse purposes.

Let’s revisit this example now to add a different policy expression to each concrete
description:

The concrete description for the SOAP 1.1 binding with an ignorable assertion:

<definitions targetNamespace=
“http://actioncon.com/contract/POSoap11”
xmlns:tns=”http://actioncon.com/contract/POSoap11”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:wsp=”http://www.w3.org/2006/07/ws-policy”
xmlns:abs=”http://actioncon.com/contract/po”
xmlns:po=”http://actioncon.com/schema/purchasing”
xmlns:custom=”http://actioncon.com/policy/custom”
xmlns:soap11=”http://schemas.xmlsoap.org/wsdl/soap/”>
<import
namespace=”http://actioncon.com/contract/PurchaseOrder”
location=”http://actioncon.com/contract/PurchaseOrder”/>

<binding name=”bdPO-SOAP11HTTP” type=”abs:ptPurchaseOrder”>
<soap11:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
<operation name=”opSubmitOrder”>
<input><soap11:body use=”literal”/></input>
<output><soap11:body use=”literal”/></output>

</operation>
<operation name=”opCheckOrderStatus”>
<input><soap11:body use=”literal”/></input>
<output><soap11:body use=”literal”/></output>

</operation>
<operation name=”opChangeOrder”>
<input><soap11:body use=”literal”/></input>
<output><soap11:body use=”literal”/></output>

Erl_16.qxd 8/7/08 9:55 AM Page 29

30 Chapter 16: Advanced WS-Policy Part I

</operation>
<operation name=”opCancelOrder”>
<input><soap11:body use=”literal”/></input>
<output><soap11:body use=”literal”/></output>

</operation>
</binding>
<service name=”svPurchaseOrder”>
<wsp:Policy>
<custom:LogMessage wsp:Ingorable=”true”/>

</wsp:Policy>
<port name=”purchaseOrder-soap11http”
binding=”tns:bdPO-SOAP11HTTP”>
<soap11:address location=
“http://actioncon.com/services/soap11/purchaseOrder”/>

</port>
</service>

</definitions>

Example 16.25
A WSDL definition with an embedded, ignorable policy assertion.

The concrete description for the SOAP 1.2 binding with one required and one ignorable
assertion:

<definitions targetNamespace=
“http://actioncon.com/contract/POSoap12”
xmlns:tns=”http://actioncon.com/contract/POSoap12”
xmlns=”http://schemas.xmlsoap.org/wsdl/”
xmlns:wsp=”http://www.w3.org/2006/07/ws-policy”
xmlns:wsam=” http://www.w3.org/2007/05/addressing/
metadata”

xmlns:custom=”http://actioncon.com/policy/custom”
xmlns:abs=”http://actioncon.com/contract/po”
xmlns:po=”http://actioncon.com/schema/purchasing”
xmlns:soap11=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”>
<import

namespace=”http://actioncon.com/contract/PurchaseOrder”
location=”http://actioncon.com/contract/PurchaseOrder”/>

<binding name=”bdPO-SOAP12HTTP” type=”abs:ptPurchaseOrder”>
<soap12:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
<operation name=”opSubmitOrder”>
<soap12:operation soapAction=
“http://actioncon.com/submitOrder/request”
soapActionRequired=”true” required=”true”/>

Erl_16.qxd 8/7/08 9:55 AM Page 30

16.4 Concurrent Policy-Enabled Contracts 31

<input><soap12:body use=”literal”/></input>
<output><soap12:body use=”literal”/></output>

</operation>
<operation name=”opCheckOrderStatus”>
<soap12:operation soapAction=
“http://actioncon.com/submitOrder/request”
soapActionRequired=”true” required=”true”/>

<input><soap12:body use=”literal”/></input>
<output><soap12:body use=”literal”/></output>

</operation>
<operation name=”opChangeOrder”>
<soap12:operation soapAction=
“http://actioncon.com/submitOrder/request”
soapActionRequired=”true” required=”true”/>
<input><soap12:body use=”literal”/></input>
<output><soap12:body use=”literal”/></output>

</operation>
<operation name=”opCancelOrder”>
<soap12:operation soapAction=
“http://actioncon.com/submitOrder/request”
soapActionRequired=”true” required=”true”/>
<input><soap12:body use=”literal”/></input>
<output><soap12:body use=”literal”/></output>

</operation>
</binding>
<service name=”svPurchaseOrder”>
<wsp:Policy>
<wsp:All>
<wsam:Addressing/>
<custom:LogMessage wsp:Ingorable=”true”/>

</wsp:All>
</wsp:Policy>
<port name=”purchaseOrder-soap11http”
binding=”tns:bdPO-SOAP11HTTP”>
<soap11:address location=
“http://actioncon.com/services/soap11/purchaseOrder”/>

</port>
<port name=”purchaseOrder-http-soap12”
binding=”tns:bdPO-SOAP12HTTP”>
<soap12:address location=
“http://actioncon.com/services/soap12/purchaseOrder”/>

</port>
</service>

</definitions>

Example 16.26
A different version of the WSDL definition with an embedded policy expression comprised of required and ignorable
policy assertions.

Erl_16.qxd 8/7/08 9:55 AM Page 31

You might recall that the two versions of the concrete descriptions were created to
accommodate different types of consumers. Those that support SOAP 1.2 are now also
being asked to support WS-Addressing headers as per the new wsam:Addressing
assertion.

The alternate concrete description that exposes operations via SOAP 1.1 is intended for
external partner organizations with less progressive technology platforms. Therefore,
the custom:LogMessage assertion is added for informational purposes only. Any con-
sumers incapable of working with WS-Policy will not be affected by the presence of this
assertion because it is ignorable.

SUMMARY OF KEY POINTS

• When the Concurrent Contracts pattern is applied to a Web service, it pro-
vides a design option whereby a single body of service logic is exposed via
multiple Web service contracts.

• Instead of creating elaborate policy alternatives, you can consider applying
this pattern to provide alternate Web service contracts where each contains
a different policy expression or a different set of policy alternatives.

• This technique is most commonly used to accommodate different groups of
consumers and also to release alternate versions of Web service contracts
for security reasons.

32 Chapter 16: Advanced WS-Policy Part I

Erl_16.qxd 8/7/08 9:55 AM Page 32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

