S
THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL é.é

Web Service Confract
Design & Versioning

455 SOA

Thomas Erl, Anish Karmarkar, Priscilla Walmsley,
Hugo Haas, Umit Yalcinalp, Canyang (Kevin) Liu,

- - e
= 1

22 PRENTICE
ee HALL David Orchard, Andre Tost, James Pasley

Erl_O0FM.gxd 8/9/08 11:14 AM Page Vv $

Web Service Contract Design
and Versioning for SOA

Thomas Erl, Anish Karmarkar, Priscilla Walmsley,
Hugo Haas, Umit Yalcinalp, Canyang Kevin Liu,
David Orchard, Andre Tost, James Pasley

PRENTICE HALL

L]
L]

H UPPER SADDLE RIVER, NJ « BOSTON ¢ INDIANAPOLIS « SAN FRANCISCO
epEpTIEE NEWYORKe TORONTO « MONTREAL « LONDON « MUNICH ¢ PARIS « MADRID
HALL

CAPETOWN ¢ SYDNEY ¢ TOKYO ¢ SINGAPORE ¢ MEXICO CITY

o

Erl_Ptl.gxd 7/30/08 3:06 PM Page 1

Fundamental Service Contract Design

Chapter 3: SOA Fundamentals and Web Service Contracts
Chapter 4: Anatomy of a Web Service Contract
Chapter 5: A Plain English Guide to Namespaces

Chapter 6: Fundamental XML Schema: Types and Message Structure
Basics

Chapter 7: Fundamental WSDL Part I: Abstract Description Design
Chapter 8: Fundamental WSDL Part II: Concrete Description Design
Chapter 9: Fundamental WSDL 2.0: New Features, and Design Options

Chapter 10: Fundamental WS-Policy: Expression, Assertion,
and Attachment

Chapter 11: Fundamental Message Design: SOAP Envelope Structure,
and Header Block

Erl Ptl.gxd 7/30/08 3:06 PM Page 2 $

s we established in Chapter 1, this is not a book about SOA, nor is it a book about

Web services. Several books have been published over the past few years that
address these topics individually. What we are focused on is the design and versioning
of Web service contracts in support of service-oriented solution design. What this
requires us to do is explore the marriage of Web service contract technologies with the
service-orientation design paradigm and the service-oriented architectural model.

Erl _03.gxd 8/7/08 9:50 AM Page 1

Chapter 3

=

SOA Fundamentals and Web
Service Contracts

3.1 Basic SOA Terminology
3.2 Service-Oriented Computing Goals and Web Service Contracts
3.3 Service-Orientation and Web Service Contracts

3.4 SOA Design Patterns and Web Service Contracts

Erl_03.gxd

8/7/08 9:50 AM Page 2 CE

s we established in Chapter 1, this is not a book about SOA, nor is it a book about

Web services. Several books have been published over the past few years that
address these topics individually. What we are focused on is the design and versioning
of Web service contracts in support of service-oriented solution design. What this
requires us to do is explore the marriage of Web service contract technologies with the
service-orientation design paradigm and the service-oriented architectural model.

As a starting point, we first need to establish some fundamental terms and concepts
associated with service-oriented computing and with an emphasis of how these terms
and concepts relate to Web service contracts.

3.1 Basic SOA Terminology

This section borrows some content from SOAGlossary.com to provide the following
term definitions:

¢ Service-Oriented Computing
e Service-Orientation

e Service-Oriented Architecture (SOA)
e Service

e Service Models

* Service Composition

* Service Inventory

® Service-Oriented Analysis

e Service Candidate

¢ Service-Oriented Design

e Web Service

e Service Contract

* Service-Related Granularity

Erl_03.gxd

8/7/08 9:50 AM Page 3 CE

3.1 Basic SOA Terminology 3

If you are already an experienced SOA professional, then you might want to just skim
through this part of the book. The defined terms are used here and there throughout sub-
sequent chapters.

Service-Oriented Computing

Service-oriented computing is an umbrella term that represents a new generation distrib-
uted computing platform. As such, it encompasses many things, including its own
design paradigm and design principles, design pattern catalogs, pattern languages, a
distinct architectural model, and related concepts, technologies, and frameworks.

Service-oriented computing builds upon past distributed computing platforms and
adds new design layers, governance considerations, and a vast set of preferred imple-
mentation technologies, many of which are based on the Web services framework.

In this book we refer primarily to the strategic goals of service-oriented computing as
they tie into approaches for Web service contract design and versioning. These goals are
briefly described in the Service-Oriented Computing Goals and Web Service Contracts
section.

Service-Orientation

Service-orientation is a design paradigm intended for the creation of solution logic units
that are individually shaped so that they can be collectively and repeatedly utilized in
support of the realization of the specific strategic goals and benefits associated with SOA
and service-oriented computing.

Solution logic designed in accordance with service-orientation can be qualified with
“service-oriented,” and units of service-oriented solution logic are referred to as “serv-
ices.” As a design paradigm for distributed computing, service-orientation can be com-
pared to object-orientation (or object-oriented design). Service-orientation, in fact, has
many roots in object-orientation and has also been influenced by other industry devel-
opments, including EAI, BPM, and Web services.

The service-orientation design paradigm is primarily comprised of eight specific design
principles, as explained in the Service-Orientation and Web Service Contracts section. Sev-
eral of these principles can affect the design of Web service contracts.

Erl_03.gxd

8/7/08 9:50 AM Page 4 $

4 Chapter 3: SOA Fundamentals and Web Service Contracts

l Service-Orientation

T T T T T

Web
Services

A

s e bce e e

—————

Object-Orientation

T T T T

Modular Procedural
Development Programing l RPC l Others

Figure 3.1

Service-orientation is very much an evolutionary design paradigm that owes much of its exis-
tence to established design practices and technology platforms.

Service-Oriented Architecture (SOA)

Service-oriented architecture represents an architectural model that aims to enhance the
agility and cost-effectiveness of an enterprise while reducing the overall burden of IT on
an organization. It accomplishes this by positioning services as the primary means
through which solution logic is represented. SOA supports service-orientation in the
realization of the strategic goals associated with service-oriented computing.

As a form of technology architecture, an SOA implementation can consist of a combina-
tion of technologies, products, APIs, supporting infrastructure extensions, and various
other parts. The actual complexion of a deployed service-oriented architecture is unique
within each enterprise; however it is typified by the introduction of new technologies
and platforms that specifically support the creation, execution, and evolution of service-
oriented solutions. As a result, building a technology architecture around the service-
oriented architectural model establishes an environment suitable for solution logic that
has been designed in compliance with service-orientation design principles.

Historically, the term “service-oriented architecture” (or “SOA”) has been
used so broadly by the media and within vendor marketing literature that
it has almost become synonymous with service-oriented computing itself.

o

Erl _03.gxd 8/7/08 9:50 AM Page 5 $

3.1 Basic SOA Terminology 5

Note that the following service-oriented architecture types exist:
* Service Architecture
* Service Composition Architecture
¢ Service Inventory Architecture
e Service-Oriented Enterprise Architecture

As you may have guessed, we are primarily focused on the service architecture in this
book. However, the decisions we make regarding the design of Web service contracts
will ultimately affect the quality of related composition and inventory architectures.

Service-Oriented
Enterprise
Architecture

Service
Inventory
Architecture

Service
Composition

Architecture

Service
Architecture

Figure 3.2

The layered SOA model that reveals how service-oriented architecture types can encompass each other. (These
different architectural types are explained in the book SOA Design Patterns.)

o

Erl_03.gxd

8/7/08 9:50 AM Page 6 $

6 Chapter 3: SOA Fundamentals and Web Service Contracts

Service

A service is a unit of solution logic to which service-orientation Furehase Order

has been applied to a meaningful extent. It is the application of O SubmitOrder
service-orientation design principles that distinguishes a unit of O CheckOrderStatus
logic as a service compared to units of logic that may exist solely © ChangeOrder

O CancelOrder

as objects or components.

Subsequent to conceptual service modeling, service-oriented

design and development stages implement a service as a phys- Figure 3.3
The chorded circle symbol is

.. . - used to represent a service,
acteristics that support the attainment of the strategic goals primarily from a contract

ically independent software program with specific design char-

associated with service-oriented computing. perspective.

Each service is assigned its own distinct functional context and

is comprised of a set of capabilities related to this context. Therefore, a service can be
considered a container of capabilities associated with a common purpose (or functional
context). Capabilities are expressed in the service contract (defined shortly).

As we established earlier, this book is dedicated to the design of technical contracts for
services built as Web services. Within a Web service contract, service capabilities are
referred to as service operations.

Service Models

A service model is a classification used to indicate that a service belongs to one of several
predefined types based on the nature of the logic it encapsulates, the reuse potential of
this logic, and how the service may relate to domains within its enterprise.

The following three service models are common to most enterprise environments and
therefore common to most SOA projects:

e Task Service — A service with a non-agnostic functional context that generally cor-
responds to single-purpose, parent business process logic. A task service will usu-
ally encapsulate the composition logic required to compose several other services
in order to complete its task.

* Entity Service — A reusable service with an agnostic functional context associated
with one or more related business entities (such as invoice, customer, claim, etc.).
For example, a Purchase Order service has a functional context associated with the
processing of purchase order-related data and logic. Chapter 13 has a section dedi-
cated to Web service contract design for entity services.

o

Erl_03.gxd

8/7/08 9:50 AM Page 7 CE

3.1 Basic SOA Terminology 7

e Utility Service — Also a reusable service with an agnostic functional context, but
this type of service is intentionally not derived from business analysis specifica-
tions and models. It encapsulates low-level technology-centric functions, such as
notification, logging, and security processing.

Service models play an important role during service-oriented analysis and service-
oriented design phases. Although the just listed service models are well established, it is
not uncommon for an organization to create its own service models. Often these new
classifications tend to be derived from one of the aforementioned fundamental service
models.

Most of the service contract examples in this book are for entity services
that are required to deal with core business-related processing and the
exchange of business documents.

Agnostic Logic and Non-Agnostic Logic

The term “agnostic” originated from Greek and means “without knowledge.” Therefore,
logic that is sufficiently generic so that it is not specific to (has no knowledge of) a par-
ticular parent task is classified as agnostic logic. Because knowledge specific to single
purpose tasks is intentionally omitted, agnostic logic is considered multi-purpose. On
the flipside, logic that is specific to (contains knowledge of) a single-purpose task is
labeled as non-agnostic logic.

Another way of thinking about agnostic and non-agnostic logic is to focus on the extent to
which the logic can be repurposed. Because agnostic logic is expected to be multi-purpose,
it is subject to the Service Reusability principle with the intention of turning it into highly
reusable logic. Once reusable, this logic is truly multi-purpose in that it, as a single soft-
ware program (or service), can be used to automate multiple business processes.

Non-agnostic logic does not have these types of expectations. It is deliberately designed
as a single-purpose software program (or service) and therefore has different character-
istics and requirements.

Service Composition

A service composition is an aggregate of services collectively composed to automate a par-
ticular task or business process. To qualify as a composition, at least two participating
services plus one composition initiator need to be present. Otherwise, the service inter-
action only represents a point-to-point exchange.

o

Erl_03.gxd

8/7/08 9:50 AM Page 8 $

8 Chapter 3: SOA Fundamentals and Web Service Contracts

Service compositions can be classified into primitive and complex variations. In early
service-oriented solutions, simple logic was generally implemented via point-to-point
exchanges or primitive compositions. As the surrounding technology matured, complex
compositions became more common.

Service A
o Capability A
(1) //
@) @ @ (5)
Service B Service C Service D
x‘o/ Capability A \'l Capability A o Capability A
o Capability B o Capability B o Capability B

Figure 3.4

A service composition comprised of four services. The arrows indicate a sequence of modeled message
exchanges. Note arrow #5 representing a one-way, asynchronous data delivery from Service A to Service D.

Much of the service-orientation design paradigm revolves around preparing services for
effective participation in numerous complex compositions—so much so that the Service
Composability design principle exists, dedicated solely to ensuring that services are
designed in support of repeatable composition.

How service contracts are designed will influence the effectiveness and complexity
potential of service compositions. Various contract-related granularity levels will deter-
mine the quantity of runtime processing and data exchange required—qualities that can
end up hindering or enabling composition performance. Furthermore, techniques, such
as those provided by the Contract Denormalization and Concurrent Contracts patterns,

o

Erl_03.gxd

8/7/08 9:50 AM Page 9 CE

3.1 Basic SOA Terminology 9

can help optimize composition designs. (These design patterns are briefly explained at
the end of this chapter in the SOA Design Patterns and Web Service Contracts section.)

Service Inventory

A service inventory is an independently standardized and governed collection of com-
plementary services within a boundary that represents an enterprise or a meaningful
segment of an enterprise. When an organization has multiple service inventories, this
term is further qualified as domain service inventory.

Service inventories are typically created through top-down delivery processes that
result in the definition of service inventory blueprints. The subsequent application of serv-
ice-orientation design principles and custom design standards throughout a service
inventory is of paramount importance so as to establish a high degree of native inter-
service interoperability. This supports the repeated creation of effective service compo-
sitions in response to new and changing business requirements.

It is worth noting that the application of the Standardized Service Contract principle is
intended to be limited to the boundary of a service inventory, as are design standards-
related patterns, such as Canonical Transport and Canonical Schema.

Service-Oriented Analysis

Service-oriented analysis represents one of the early stages in an SOA initiative and the
first phase in the service delivery cycle. Itis a process that begins with preparatory infor-
mation gathering steps that are completed in support of a service modeling sub-process
that results in the creation of conceptual service candidates, service capability candi-
dates, and service composition candidates.

The service-oriented analysis process is commonly carried out iteratively, once for each
business process. Typically, the delivery of a service inventory determines a scope that
represents a meaningful domain or the enterprise as a whole. All iterations of a service-
oriented analysis then pertain to that scope, with an end-result of a service inventory
blueprint.

Visit SOAMethodology.com for an explanation of the iterative service-ori-
ented analysis process.

Erl_03.gxd

8/7/08 9:50 AM Page 10 $

10 Chapter 3: SOA Fundamentals and Web Service Contracts

A key success factor of the service-oriented analysis process is the hands-on collabora-
tion of both business analysts and technology architects. The former group is especially
involved in the definition of service candidates with a business-centric functional con-
text because they understand the business processes used as input for the analysis and
because service-orientation aims to align business and IT more closely.

Service Candidate

When conceptualizing services during the service modeling sub-process of the service-
oriented analysis phase, services are defined on a preliminary basis and still subject to a
great deal of change and refinement before they are handed over to the service-oriented
design project stage responsible for producing physical service contracts.

The term “service candidate” is used to help distinguish a conceptualized service from
an actual implemented service. You'll notice a few references to service candidates in
this book, especially in some of the early case study content.

service
operation

<definitions name="Invoice">
<types>

;}types> Invoice

<message>
<part/>

</message>

<portType>
<operafion name="Get"™>
<input message="..."/>
<output message="..."/>
</operation>

</por-t-'i'ype>

Figure 3.5

The “chorded circle” symbol (right) provides a simple representation of a service contract during both mod-
eling and design stages. The Get operation (right) is first modeled and then forms the basis of the actual
operation definition within a WSDL document (left).

Erl_03.gxd

8/7/08 9:50 AM Page 11 CE

3.1 Basic SOA Terminology 11

Service-Oriented Design

The service-oriented design phase represents a service delivery lifecycle stage dedicated to
producing service contracts in support of the well-established “contract-first” approach
to software development.

The typical starting point for the service-oriented design process is a service candidate
that was produced as a result of completing all required iterations of the service-oriented
analysis process. Service-oriented design subjects this service candidate to additional
considerations that shape it into a technical service contract in alignment with other
service contracts being produced for the same service inventory.

There is a different service-oriented design process for each of the three common serv-
ice models (task, entity, and utility). The variations in process steps primarily accom-
modate different priorities and the nature of the logic being expressed by the contract.

This book does not discuss the process of service-oriented design in detail, but there are
references to some of the considerations raised by the “contract-first” emphasis of this
process.

Web Service

A Web service is a body of solution logic that provides a physically decoupled technical
contract consisting of a WSDL definition and one or more XML Schema and/or WS-Pol-
icy definitions. As we will explore in this book, these documents can exist in one physi-
cal file or be spread across multiple files and still be part of one service contract.
Spreading them out makes them reusable across multiple contracts.

The Web service contract exposes public capabilities as operations, establishing a tech-
nical interface comparable to a traditional application programming interface (API) but
without any ties to proprietary communications framework.

The logic encapsulated by a Web service does not need to be customized or component-
based. Legacy application logic, for example, can be exposed via Web service contracts
through the use of service adapter products. When custom-developed, Web service logic
is typically based on modern component technologies, such as Java and .NET. In this
case, the components are further qualified as core service logic.

Erl_03.gxd 8/7/08 9:50 AM Page 12 $

12 Chapter 3: SOA Fundamentals and Web Service Contracts

()

core “— im < —
service 2
i [0}
logic g

Web service acting as a service provider

[
-« —T g-% <1 core
| 8o service
0|85 .
o|8|= logic
—_— — E2
Portions of a Web service acting as a service consumer
-« — 3 gE -« «—t & -~ —_—
S@lo core 5|0
a8 service » |9
»|9|F - 0| 9|S
o8 logic o|8|=
— — & = —>d —> |E|= —— —_—
Web service transitioning through service consumer and provider roles
Figure 3.6

Three variations of a single Web service showing the different physical parts of its archi-
tecture that come into play, depending on the role it assumes at runtime. Note the cookie-
shaped symbol that represents the service contract wedged in between layers of
agent-driven message processing logic. This is the same chorded circle symbol shown
earlier but from a different perspective.

Service Contract

A service contract is comprised of one or more published documents that express meta
information about a service. The fundamental part of a service contract consists of the
documents that express its technical interface. These form the technical service contract,
which essentially establishes an API into the functionality offered by the service via its
capabilities.

o

Erl_03.gxd

8/7/08 9:50 AM Page 13 $

3.1 Basic SOA Terminology 13

When services are implemented as Web services, the most common service description
documents are the WSDL definition, XML schema definition, and WS-Policy definition.
A Web service generally has one WSDL definition, which can link to multiple XML
schema and policy definitions. When services are implemented as components, the tech-
nical service contract is comprised of a technology-specific APL

A service contract can be further comprised of human-readable documents, such as a
Service Level Agreement (SLA) that describes additional quality-of-service features,
behaviors, and limitations. As we discuss in the WS-Policy chapters, several SLA-related
requirements can also be expressed in machine-readable format as policies.

Figure 3.7 ST >

The common documents that comprisethe .~
technical Web service contract, plus a human-
readable SLA.

WSDL XML WS Service Level
schema Policy Agreement
AN 7 (SLA)

service contract

Within service-orientation, the design of the service contract is of paramount impor-
tance—so much so, that the Standardized Service Contract design principle and the
aforementioned service-oriented design process are dedicated solely to the standard-
ized creation of service contracts.

Note that because this book is focused only on technical contracts for Web services, the
terms “service contract” and “Web service contract” are used interchangeably.

Service-Related Granularity

When designing services, there are different granularity levels that need to be taken into
consideration, as follows:

® Service Granularity — Represents the functional scope of a service. For example,
fine-grained service granularity indicates that there is little logic associated with
the service’s overall functional context.

¢ Capability Granularity — The functional scope of individual service capabilities
(operations) is represented by this granularity level. For example, a GetDetail

o

Erl_03.gxd

8/7/08 9:50 AM Page 14 $

14 Chapter 3: SOA Fundamentals and Web Service Contracts

capability will tend to have a finer measure of granularity than a GetDocument
capability.

¢ Constraint Granularity — The level of validation logic detail is measured by con-
straint granularity. The more coarse constraint granularity is, the less constraints
(or smaller the amount of validation logic) a given capability will have.

® Data Granularity — This granularity level represents the quantity of data
processed. From a Web service perspective, this corresponds to input, output, and
fault messages. A fine level of data granularity is equivalent to a small amount of
data.

Because the level of service granularity determines the functional scope of a service, it is
usually determined during analysis and modeling stages that precede service contract
design. Once a service’s functional scope has been established, the other granularity
types come into play and affect both the modeling and physical design of a Web service
contract.

In this book you will especially notice references to constraint granularity because so
much of contract design relates to the definition of validation logic constraints.

the quantity of logic
encapsulated by a service
capability determines the
level of capability granularity

Invoice
the quantity s ~
of logic associated / :
with the service | | /7 T7 77T \ !
context determines © : Get |
I

the level of o1 GetHeader
service granularity N -

the quantity of data exchanged
by a capability determines
the level of data granularity

the quantity and detail of validation
logic associated with a capability or a type
determines the level of constraint granularity

Figure 3.8

The four granularity levels that represent various characteristics of a service and its contract.
Note that these granularity types are, for the most part, independent of each other.

Erl_03.gxd

8/7/08 9:50 AM Page 15 CE

3.2 Service-Oriented Computing Goals and Web Service Contracts 15

Further Reading

As mentioned at the beginning of this section, all of these terms are defined at SOA-
Glossary.com. More detailed explanations are available at WhatlsSOA.com and in
Chapters 3 and 4 of SOA: Principles of Service Design. If you are not familiar with
service-oriented computing, it is recommended that you read through these additional
descriptions.

3.2 Service-Oriented Computing Goals and Web Service Contracts

It’s always good to get an idea of the big picture before diving into the details of any
technology-centric topic. For this reason, we’ll take the time to briefly mention the over-
arching goals and benefits associated with service-oriented computing as they relate to
Web service contract design.

Because these goals are strategic in nature, they are focused on long-term benefit—a con-
sideration that ties into both the design and governance of services and their contracts.
An understanding of these long-term benefits helps provide a strategic context for many
of the suggested techniques and practices in this guide.

Here’s the basic list of the goals and benefits of service-oriented computing:
¢ Increased Intrinsic Interoperability
® Increased Federation
¢ Increased Vendor Diversification Options
¢ Increased Business and Technology Domain Alignment
® Increased ROI
® Increased Organizational Agility
® Reduced IT Burden

Although it might not be evident, service contract design touches each of these goals to
some extent.

Let’s explore how.

Erl_03.gxd

8/7/08 9:50 AM Page 16 CE

16 Chapter 3: SOA Fundamentals and Web Service Contracts

Increased Intrinsic Interoperability

For services to attain a meaningful level of intrinsic interoperability, their technical
contracts must be highly standardized and designed consistently to share common
expressions and data models. This fundamental requirement is why project teams often
must take control of their Web service contracts instead of allowing them to be auto-
generated and derived from different sources.

Increased Federation

Service-oriented computing aims to achieve a federated service endpoint layer. It is the
service contracts that are the endpoints in this layer, and it is only through their consis-
tent and standardized design that federation can be achieved. This, again, is a goal that
is supported by the ability of a project team to customize and refine Web service con-
tracts so that they establish consistent endpoints within a given service inventory
boundary:.

Increased Vendor Diversification Options

For a service-oriented architecture to allow on-going vendor diversification, individual
services must effectively abstract proprietary characteristics of their underlying vendor
technology. The contract remains the only part of a service that is published and avail-
able to consumers. It must therefore be deliberately designed to express service capabil-
ities without any vendor-specific details. This extent of abstraction allows service
owners to extend or replace vendor technology. Vendor diversification is especially
attainable through the use of Web services, due to the fact that they are supported by all
primary vendors while providing a non-proprietary communications framework.

Increased Business and Technology Domain Alignment

The service layers that tend to yield the greatest gains for service-oriented environments
are those comprised of business-centric services (such as task and entity services). These
types of services introduce an opportunity to effectively express various forms of busi-
ness logic in close alignment with how this logic is modeled and maintained by business
analysts.

This expression is accomplished through service contracts and it is considered so impor-
tant that entire modeling processes and approaches exist to first produce a conceptual
version of the service contract prior to its physical design.

o

Erl_03.gxd

8/7/08 9:50 AM Page 17 CE

3.3 Service-Orientation and Web Service Contracts 17

Strategic Benefits

The latter three goals listed in the previous bullet list represent strategic benefits that are
achieved when attaining the first four goals. We therefore don’t need to map the rele-
vance of service contracts to each of them individually.

If we take the time to understand how central service contract design is to the ultimate
target state we hope to achieve with service-oriented computing in general, it’s clear to
see why this book was written.

Further Reading

Formal descriptions for each of these strategic goals are available at WhatIsSOA.com
and in Chapter 3 of SOA: Principles of Service Design. While it’s good to have an under-
standing of these goals and benefits, it is not required to learn the technologies covered
in this book.

3.3 Service-Orientation and Web Service Contracts

To understand SOA is to understand service-orientation, the design paradigm that
establishes what is required in order to create software programs that are truly service-
oriented.

Service-orientation represents a design approach comprised of eight specific design
principles. Service contracts tie into most but not all of these principles. Let’s first intro-
duce their official definitions:

e Standardized Service Contract — “Services within the same service inventory are in
compliance with the same contract design standards.”

® Service Loose Coupling — “Service contracts impose low consumer coupling
requirements and are themselves decoupled from their surrounding
environment.”

® Service Abstraction — “Service contracts only contain essential information and
information about services is limited to what is published in service contracts.”

® Service Reusability — “Services contain and express agnostic logic and can be posi-
tioned as reusable enterprise resources.”

® Service Autonomy — “Services exercise a high level of control over their underlying
runtime execution environment.”

o

Erl _03.gxd 8/7/08 9:50 AM Page 18 $

18 Chapter 3: SOA Fundamentals and Web Service Contracts

¢ Service Statelessness — “Services minimize resource consumption by deferring the
management of state information when necessary.”

® Service Discoverability — “Services are supplemented with communicative meta
data by which they can be effectively discovered and interpreted.”

* Service Composability — “Services are effective composition participants, regard-
less of the size and complexity of the composition.”

implement a
standardized contract Standar‘
Service Contract
Servr‘ minimize dependencies
Loose Coupling
implement generic and
reusable logic and contract Servl‘
A - Reusability
minimize the availability
Servic of meta information
Abstraction implement independent
functional boundary and
runtime environment Servicp

Autonomy

maximize composability

Servl‘

Composability

implement adaptive and
state management-free logic Serv‘
Statelessness

implement communicative
meta information Servl‘

Discoverability

Figure 3.9
How service-orientation design principles can collectively shape service design.

Each of these design principles can, to some extent, influence how we decide to build a
Web service contract. With regards to the topics covered in this book, the following prin-
ciples have a direct impact.

o

Erl_03.gxd

8/7/08 9:50 AM Page 19 CE

3.3 Service-Orientation and Web Service Contracts 19

Standardized Service Contract

Given its name, it’s quite evident that this design principle is only about service con-
tracts and the requirement for them to be consistently standardized within the bound-
ary of a service inventory. This design principle essentially advocates “contract first”
design for services.

Service Loose Coupling

This principle also relates to the service contract. Its design and how it is architecturally
positioned within the service architecture are regulated with a strong emphasis on
ensuring that only the right type of content makes its way into the contract in order to
avoid the negative coupling types.

The following sections briefly describe common types of coupling. All are considered
negative coupling types, except for the last.

Contract-to-Functional Coupling

Service contracts can become dependent on outside business processes, especially when
they are coupled to logic that was designed directly in support of these processes. This
can result in contract-to-functional coupling whereby the contract expresses character-
istics that are specifically related to the parent process logic.

Contract-to-Implementation Coupling

When details about a service’s underlying implementation are embedded within a serv-
ice contract, an extent of contract-to-implementation coupling is formed. This negative
coupling type commonly results when service contracts are a native part of the service
implementation (as with component APIs) or when they are auto-generated and derived
from implementation resources, such as legacy APIs, components, and databases.

Contract-to-Logic Coupling

The extent to which a service contract is bound to the underlying service programming
logic is referred to as contract-to-logic coupling. This is considered a negative type of
service coupling because service consumer programs that bind to the service contract
end up also inadvertently forming dependencies on the underlying service logic.

Erl_03.gxd

8/7/08 9:50 AM Page 20 $

20 Chapter 3: SOA Fundamentals and Web Service Contracts

core
service
logic

hessagh
gfocessiflg
logic

coupling

Figure 3.10
A Web service contract can be negatively coupled to various parts of the underlying service
implementation.

Contract-to-Technology Coupling

When the contract exposed by a service is bound to non-industry-standard communi-
cations technology, it forms an extent of contract-to-technology coupling. Although this
coupling type could be applied to the dependencies associated with any proprietary
technology, it is used exclusively for communications technology because that is what
service contracts are generally concerned with.

An example of contract-to-technology coupling is when the service exists as a distrib-
uted component that requires the use of a proprietary RPC technology. Because this
book is focused solely on Web service contract technology, this coupling type does not
pose a design concern.

Logic-to-Contract Coupling

Each of the previously described forms of coupling are considered negative because
they can shorten the lifespan of a Web service contract, thereby leading to increased gov-
ernance burden as a result of having to manage service contract versions.

This book is focused on providing the skills necessary to achieve high levels of logic-to-
contract coupling by ensuring that the Web service contract can be designed with com-
plete independence from the underlying Web service implementation.

o

Erl_03.gxd

8/7/08 9:50 AM Page 21 $

3.3 Service-Orientation and Web Service Contracts 21

Figure 3.11

The most desirable design is for the Web service
contract to remain an independent and fully decou-
pled part of the service architecture, thereby requir-
ing the underlying logic to be coupled to it.

coupling

|

core
service
logic

age

|

procflssing
Icfpic

Service Abstraction

By turning services into black boxes, the contracts are all that is officially made available
to consumer designers who want to use the services. While much of this principle is
about the controlled hiding of information by service owners, it also advocates the
streamlining of contract content to ensure that only essential content is made available.
The related use of the Validation Abstraction pattern further can affect aspects of con-
tract design, especially related to the constraint granularity of service capabilities.

Service Reusability

While this design principle is certainly focused on ensuring that service logic is designed
to be robust and generic and much like a commercial product, these qualities also carry
over into contract design. When viewing the service as a product and its contract as a
generic API to which potentially many consumer programs will need to interface, the
requirement emerges to ensure that the service’s functional context, the definition of its
capabilities, and the level at which each of its design granularities are set are appropri-
ate for it to be positioned as a reusable enterprise resource.

Service Discoverability

Because the service contracts usually represent all that is made available about a service,
they are what this principle is primarily focused on when attempting to make each serv-
ice as discoverable and interpretable as possible by a range of project team members.

Note that although Web service contracts need to be designed to be discoverable, this
book does not discuss discovery processes or registry-based architectures.

o

Erl_03.gxd

8/7/08 9:50 AM Page 22 CE

22 Chapter 3: SOA Fundamentals and Web Service Contracts

Service Composability

This regulatory design principle is very concerned with ensuring that service contracts
are designed to represent and enable services to be effective composition participants.
The contracts must therefore adhere to the requirements of the previously listed design
principles and also take multiple and complex service composition requirements into
account.

Further Reading

Design principles are referenced throughout this book but represent a separate subject-
matter that is covered in SOA Principles of Service Design. Introductory coverage of serv-
ice-orientation as a whole is also available at SOAPrinciples.com.

3.4 SOA Design Patterns and Web Service Contracts

Design patterns provide proven solutions to common design problems. SOA has
matured to an extent where a catalog of design patterns has been established. Of inter-
est to us are those that affect the design and versioning of service contracts, specifically:

e Canonical Expression — Service contracts are standardized using naming
conventions.

o Canonical Schema — Schema data models for common information sets are stan-
dardized across service contracts within a service inventory boundary.

o Canonical Versioning — Service contracts within the same service inventory are
subject to the same versioning rules and conventions.

o Concurrent Contracts — Multiple contracts can be created for a single service, each
targeted at a specific type of consumer.

e Compatible Change—Already implemented service contracts are revised without
breaking backwards compatibility.

o Contract Centralization — Access to service logic is limited to the service contract,
forcing consumers to avoid negative contract-to-implementation coupling.

o Contract Denormalization — Service contracts can include a measured extent of
denormalization, allowing multiple capabilities to redundantly express core func-
tions in different ways for different types of consumer programs.

o

Erl 03.gxd 8/7/08 9:50 AM Page 23 $

3.4 SOA Design Patterns and Web Service Contracts 23

e Decomposed Capability — Services prone to future decomposition can be equipped
with a series of granular capabilities that more easily facilitate decomposition.

® Decoupled Contract — The service contract is physically decoupled from its
implementation.

¢ Distributed Capability — The underlying service logic is distributed, thereby allow-
ing the implementation logic for a capability with unique processing requirements
to be physically separated, while continuing to be represented by the same service
contract.

® Messaging Metadata — The message contents can be supplemented with activity-
specific metadata that can be interpreted and processed separately at runtime.

* Partial Validation — Service consumers are designed to validate a subset of the data
received from a service.

e Policy Centralization — Global or domain-specific policy assertions can be isolated
and applied to multiple services.

e Proxy Capability — When a service contract needs to be decomposed, the original
service contract can be preserved, even if underlying capability logic is separated,
by turning the established capability definition into a proxy.

o Schema Centralization — Select schemas that exist as physically separate parts of the
service contract are shared across multiple contracts.

* Service Messaging — Services can be designed to interact via a messaging-based
technology, which removes the need for persistent connections and reduces cou-
pling requirements.

e Termination Notification — Service contracts are extended to express termination
information.

o Validation Abstraction — Granular validation logic and rules can be abstracted away
from the service contract, thereby decreasing constraint granularity and increasing
the contract’s potential longevity.

o Version Identification — Version numbers and related information is expressed
within service contracts.

Erl_03.gxd

8/7/08 9:50 AM Page 24 $

24 Chapter 3: SOA Fundamentals and Web Service Contracts

Web Services and the Decoupled Contract Pattern

It is worth singling out Decoupled Contract at this stage because a Web service contract
is essentially an implementation of this pattern. When building services as Web services,
service contracts are positioned as physically separate parts of the service architecture.
This allows us to fully leverage the technologies covered in this book in order to design
and develop these contracts independently from the logic and implementations they
will eventually represent.

Web Service Contract

)

‘ Message Processing Logic
Ll
Ll

L

Core Service Logic

/

Figure 3.12
The Web service contract is a physically separated part of a Web service implementation.

o

Erl_03.gxd

8/7/08 9:50 AM Page 25 CE

3.4 SOA Design Patterns and Web Service Contracts 25

Therefore, you may not see a lot of references to the Decoupled Contract pattern because
it goes without saying that a Web service contract is naturally decoupled. However, it is
always important to keep the coupling types explained earlier in the Service-Orientation
and Web Service Contracts section in mind because although physically decoupled, the
content of any Web service contract can still be negatively coupled to various parts of the
service environment.

Further Reading

The previously listed design patterns are part of a larger design pattern catalog pub-
lished in the book SOA Design Patterns. Concise descriptions of these patterns are also
available at SOAPatterns.org.

Erl 03.gxd 8/7/08 9:50 AM Page 26 $

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

