
SOA
Principles of Service Design

Thomas Erl

PRENTICE HALL

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO

NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID

CAPETOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

00_0132344823_FM.qxd 6/13/07 5:11 PM Page ix

Preface . xxv

Chapter 1: Introduction . 1

1.1 Objectives of this Book . 3

1.2 Who this Book Is For . 3

1.3 What this Book Does Not Cover . 4
Topics Covered by Other Books . 4
SOA Standardization Efforts . 5

1.4 How this Book Is Organized . 6
Part I: Fundamentals . 7
Part II: Design Principles. 9
Part III: Supplemental . 12
Appendices. 12

1.5 Symbols, Figures, and Style Conventions. 13
Symbol Legend . 13
How Color Is Used . 13
The Service Symbol . 13

1.6 Additional Information . 16
Updates, Errata, and Resources (www.soabooks.com) 16
Master Glossary (www.soaglossary.com) 16
Referenced Specifications (www.soaspecs.com). 16
Service-Oriented Computing Poster (www.soaposters.com) 16

Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xiii

xiv Contents

The SOA Magazine (www.soamag.com) 17
Notification Service . 17
Contact the Author . 17

Chapter 2: Case Study . 19

2.1 Case Study Background: Cutit Saws Ltd.. 20
History . 20
Technical Infrastructure and Automation Environment 21
Business Goals and Obstacles. 21

PART I: FUNDAMENTALS

Chapter 3: Service-Oriented Computing and SOA. 25

3.1 Design Fundamentals . 26
Design Characteristic . 27
Design Principle . 28
Design Paradigm . 29
Design Pattern. 30
Design Pattern Language . 31
Design Standard . 32
Best Practice . 34
A Fundamental Design Framework. 35

3.2 Introduction to Service-Oriented Computing 37
Service-Oriented Architecture. 38
Service-Orientation, Services, and Service-Oriented

Solution Logic . 39
Service Compositions . 39
Service Inventory. 40
Understanding Service-Oriented Computing Elements 40
Service Models . 43
SOA and Web Services. 46
Service Inventory Blueprints . 51
Service-Oriented Analysis and Service Modeling. 52

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xiv

Contents xv

Service-Oriented Design. 53
Service-Oriented Architecture: Concepts, Technology,

and Design . 54

3.3 Goals and Benefits of Service-Oriented Computing 55
Increased Intrinsic Interoperability . 56
Increased Federation . 58
Increased Vendor Diversification Options. 59
Increased Business and Technology Domain Alignment 60
Increased ROI . 61
Increased Organizational Agility . 63
Reduced IT Burden. 64

3.4 Case Study Background . 66

Chapter 4: Service-Orientation. 67

4.1 Introduction to Service-Orientation 68
Services in Business Automation . 69
Services Are Collections of Capabilities . 69
Service-Orientation as a Design Paradigm. 70
Service-Orientation and Interoperability . 74

4.2 Problems Solved by Service-Orientation 75
Life Before Service-Orientation . 76
The Need for Service-Orientation . 81

4.3 Challenges Introduced by Service-Orientation. 85
Design Complexity . 85
The Need for Design Standards . 86
Top-Down Requirements . 86
Counter-Agile Service Delivery in Support of Agile

Solution Delivery . 87
Governance Demands . 88

4.4 Additional Considerations . 89
It Is Not a Revolutionary Paradigm . 89
Enterprise-wide Standardization Is Not Required 89
Reuse Is Not an Absolute Requirement . 90

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xv

4.5 Effects of Service-Orientation on the Enterprise 91
Service-Orientation and the Concept of “Application” 91
Service-Orientation and the Concept of “Integration”. 92
The Service Composition . 94
Application, Integration, and Enterprise Architectures 95

4.6 Origins and Influences of Service-Orientation 96
Object-Orientation. 97
Web Services . 98
Business Process Management (BPM) . 98
Enterprise Application Integration (EAI) . 98
Aspect-Oriented Programming (AOP) . 99

4.7 Case Study Background . 100

Chapter 5: Understanding Design Principles 103

5.1 Using Design Principles . 104
Incorporate Principles within Service-Oriented Analysis 105
Incorporate Principles within Formal Design Processes. 106
Establish Supporting Design Standards 107
Apply Principles to a Feasible Extent . 108

5.2 Principle Profiles . 109

5.3 Design Pattern References . 111

5.4 Principles that Implement vs. Principles that Regulate. . . 111

5.5 Principles and Service Implementation Mediums. 114
“Capability” vs. “Operation” vs. “Method” 115

5.6 Principles and Design Granularity 115
Service Granularity . 116
Capability Granularity . 116
Data Granularity . 116
Constraint Granularity . 117
Sections on Granularity Levels . 118

5.7 Case Study Background . 119
The Lab Project Business Process . 119

xvi Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xvi

Contents xvii

PART II: DESIGN PRINCIPLES

Chapter 6: Service Contracts (Standardization
and Design) . 125

6.1 Contracts Explained . 126
Technical Contracts in Abstract . 126
Origins of Service Contracts . 127

6.2 Profiling this Principle . 130

6.3 Types of Service Contract Standardization 132
Standardization of Functional Service Expression 133
Standardization of Service Data Representation 134
Standardization of Service Policies . 137

6.4 Contracts and Service Design . 140
Data Representation Standardization and

Transformation Avoidance. 140
Standardization and Granularity . 142
Standardized Service Contracts and Service Models 144
How Standardized Service Contract Design Affects

Other Principles . 144

6.5 Risks Associated with Service Contract Design 149
Versioning . 149
Technology Dependencies . 150
Development Tool Deficiencies. 151

6.6 More About Service Contracts . 152
Non-Technical Service Contract Documents 152
“Web Service Contract Design for SOA”. 153

6.7 Case Study Example. 154
Planned Services . 154
Design Standards . 155
Standardized WSDL Definition Profiles . 155
Standardized XML Schema Definitions. 157
Standardized Service and Data Representation Layers 157
Service Descriptions . 158
Conclusion . 160

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xvii

Chapter 7: Service Coupling (Intra-Service and
Consumer Dependencies) 163

7.1 Coupling Explained. 164
Coupling in Abstract . 165
Origins of Software Coupling . 165

7.2 Profiling this Principle . 167

7.3 Service Contract Coupling Types 169
Logic-to-Contract Coupling (the coupling of service logic to

the service contract) . 173
Contract-to-Logic Coupling (the coupling of the service

contract to its logic). 174
Contract-to-Technology Coupling (the coupling of the

service contract to its underlying technology) 176
Contract-to-Implementation Coupling (the coupling of the

service contract to its implementation environment). 177
Contract-to-Functional Coupling (the coupling of the service

contract to external logic) . 180

7.4 Service Consumer Coupling Types. 181
Consumer-to-Implementation Coupling 182
Standardized Service Coupling and Contract Centralization . . . 185
Consumer-to-Contract Coupling . 185
Measuring Consumer Coupling . 191

7.5 Service Loose Coupling and Service Design 193
Coupling and Service-Orientation. 193
Service Loose Coupling and Granularity 195
Coupling and Service Models. 196
How Service Loose Coupling Affects Other Principles 197

7.6 Risks Associated with Service Loose Coupling 200
Limitations of Logic-to-Contract Coupling 200
Problems when Schema Coupling Is “too loose” 201

7.7 Case Study Example. 202
Coupling Levels of Existing Services . 202
Introducing the InvLegacyAPI Service . 203
Service Design Options . 205

xviii Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xviii

Contents xix

Chapter 8: Service Abstraction (Information Hiding
and Meta Abstraction Types) 211

8.1 Abstraction Explained . 212
Origins of Information Hiding . 213

8.2 Profiling this Principle . 214
Why Service Abstraction Is Needed . 214

8.3 Types of Meta Abstraction . 218
Technology Information Abstraction . 219
Functional Abstraction . 221
Programmatic Logic Abstraction. 222
Quality of Service Abstraction. 224
Meta Abstraction Types and the Web Service Regions

of Influence . 225
Meta Abstraction Types in the Real World 227

8.4 Measuring Service Abstraction . 231
Contract Content Abstraction Levels . 231
Access Control Levels. 232
Abstraction Levels and Quality of Service Meta Information . . . 234

8.5 Service Abstraction and Service Design 235
Service Abstraction vs. Service Encapsulation. 235
How Encapsulation Can Affect Abstraction 235
Service Abstraction and Non-Technical Contract Documents . . 237
Service Abstraction and Granularity . 238
Service Abstraction and Service Models 239
How Service Abstraction Affects Other Principles 239

8.6 Risks Associated with Service Abstraction 242
Multi-Consumer Coupling Requirements 242
Misjudgment by Humans . 242
Security and Privacy Concerns. 243

8.7 Case Study Example. 244
Service Abstraction Levels . 244
Operation-Level Abstraction Examples 247

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xix

Chapter 9: Service Reusability (Commercial and
Agnostic Design) . 253

9.1 Reuse Explained . 254
Reuse in Abstract . 254
Origins of Reuse . 257

9.2 Profiling this Principle . 259

9.3 Measuring Service Reusability and Applying
Commercial Design. 262

Commercial Design Considerations . 262
Measures of Planned Reuse . 265
Measuring Actual Reuse . 267
Commercial Design Versus Gold-Plating 267

9.4 Service Reuse in SOA. 268
Reuse and the Agnostic Service. 268
The Service Inventory Blueprint . 269

9.5 Standardized Service Reuse and Logic Centralization . . 270
Understanding Logic Centralization . 271
Logic Centralization as an Enterprise Standard 272
Logic Centralization and Contract Centralization 272
Centralization and Web Services . 274
Challenges to Achieving Logic Centralization 274

9.6 Service Reusability and Service Design 276
Service Reusability and Service Modeling 276
Service Reusability and Granularity . 277
Service Reusability and Service Models. 278
How Service Reusability Affects Other Principles 278

9.7 Risks Associated with Service Reusability and
Commercial Design. 281

Cultural Concerns . 281
Governance Concerns . 283
Reliability Concerns . 286
Security Concerns. 286
Commercial Design Requirement Concerns. 286
Agile Delivery Concerns . 287

xx Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xx

Contents xxi

9.8 Case Study Example. 288
The Inventory Service Profile. 288
Assessing Current Capabilities . 289
Modeling for a Targeted Measure of Reusability. 289
The New EditItemRecord Operation . 290
The New ReportStockLevels Operation 290
The New AdjustItemsQuantity Operation 291
Revised Inventory Service Profile . 292

Chapter 10: Service Autonomy (Processing Boundaries
and Control) . 293

10.1 Autonomy Explained . 294
Autonomy in Abstract . 294
Origins of Autonomy . 295

10.2 Profiling this Principle . 296

10.3 Types of Service Autonomy. 297
Runtime Autonomy (execution) . 298
Design-Time Autonomy (governance) . 298

10.4 Measuring Service Autonomy . 300
Service Contract Autonomy (services with normalized

contracts) . 301
Shared Autonomy . 305
Service Logic Autonomy (partially isolated services) 306
Pure Autonomy (isolated services) . 308
Services with Mixed Autonomy . 310

10.5 Autonomy and Service Design . 311
Service Autonomy and Service Modeling 311
Service Autonomy and Granularity . 311
Service Autonomy and Service Models 312
How Service Autonomy Affects Other Principles 314

10.6 Risks Associated with Service Autonomy 317
Misjudging the Service Scope . 317
Wrapper Services and Legacy Logic Encapsulation 318
Overestimating Service Demand . 318

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxi

10.7 Case Study Example. 319
Existing Implementation Autonomy of the GetItem Operation . . 319
New Operation-Level Architecture with Increased Autonomy . . 320
Effect on the Run Lab Project Composition 322

Chapter 11: Service Statelessness (State Management
Deferral and Stateless Design) 325

11.1 State Management Explained . 327
State Management in Abstract . 327
Origins of State Management . 328
Deferral vs. Delegation . 331

11.2 Profiling this Principle . 331

11.3 Types of State . 335
Active and Passive . 335
Stateless and Stateful . 336
Session and Context Data. 336

11.4 Measuring Service Statelessness 339
Non-Deferred State Management (low-to-no statelessness) . . . 340
Partially Deferred Memory (reduced statefulness) 340
Partial Architectural State Management Deferral

(moderate statelessness) . 341
Full Architectural State Management Deferral

(high statelessness) . 342
Internally Deferred State Management (high statelessness) . . . 342

11.5 Statelessness and Service Design 343
Messaging as a State Deferral Option . 343
Service Statelessness and Service Instances 344
Service Statelessness and Granularity . 346
Service Statelessness and Service Models 346
How Service Statelessness Affects Other Principles 347

11.6 Risks Associated with Service Statelessness 349
Dependency on the Architecture . 349
Increased Runtime Performance Demands 350
Underestimating Delivery Effort . 350

xxii Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxii

Contents xxiii

11.7 Case Study Example. 351
Solution Architecture with State Management Deferral. 352
Step 1 . 353
Step 2 . 354
Step 3 . 355
Step 4 . 356
Step 5 . 357
Step 6 . 358
Step 7 . 359

Chapter 12: Service Discoverability (Interpretability
and Communication) 361

12.1 Discoverability Explained . 362
Discovery and Interpretation, Discoverability and Interpretability in
Abstract . 364
Origins of Discovery . 367

12.2 Profiling this Principle . 368

12.3 Types of Discovery and Discoverability
Meta Information . 371

Design-Time and Runtime Discovery . 371
Discoverability Meta Information. 373
Functional Meta Data . 374
Quality of Service Meta Data. 374

12.4 Measuring Service Discoverability 375
Fundamental Levels . 375
Custom Rating System . 376

12.5 Discoverability and Service Design 376
Service Discoverability and Service Modeling 377
Service Discoverability and Granularity 378
Service Discoverability and Policy Assertions 378
Service Discoverability and Service Models. 378
How Service Discoverability Affects Other Principles 378

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxiii

12.6 Risks Associated with Service Discoverability 381
Post-Implementation Application of Discoverability 381
Application of this Principle by Non-Communicative Resources 381

12.7 Case Study Example. 382
Service Profiles (Functional Meta Information) 382
Related Quality of Service Meta Information. 386

Chapter 13: Service Composability (Composition
Member Design and Complex
Compositions) . 387

13.1 Composition Explained . 388
Composition in Abstract . 388
Origins of Composition . 390

13.2 Profiling this Principle . 392

13.3 Composition Concepts and Terminology 396
Compositions and Composition Instances 397
Composition Members and Controllers. 398
Service Compositions and Web Services 401
Service Activities . 402
Composition Initiators . 403
Point-to-Point Data Exchanges and Compositions 405
Types of Compositions . 406

13.4 The Complex Service Composition. 407
Stages in the Evolution of a Service Inventory 407
Defining the Complex Service Composition 410
Preparing for the Complex Service Composition 411

13.5 Measuring Service Composability and Composition
Effectiveness Potential . 412

Evolutionary Cycle States of a Composition 412
Composition Design Assessment . 413
Composition Runtime Assessment . 415
Composition Governance Assessment. 417
Measuring Composability . 419

xxiv Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxiv

Contents xxv

13.6 Composition and Service Design 427
Service Composability and Granularity. 427
Service Composability and Service Models 428
Service Composability and Composition Autonomy. 430
Service Composability and Orchestration. 430
How Service Composability Affects Other Principles 432

13.7 Risks Associated with Service Composition 437
Composition Members as Single Points of Failure 437
Composition Members as Performance Bottlenecks 437
Governance Rigidity of “Over-Reuse” in Compositions 438

13.8 Case Study Example. 439

PART III: SUPPLEMENTAL

Chapter 14: Service-Orientation and Object-
Orientation: A Comparison of Principles
and Concepts . 445

14.1 A Tale of Two Design Paradigms 446

14.2 A Comparison of Goals . 449
Increased Business Requirements Fulfillment 450
Increased Robustness . 451
Increased Extensibility . 451
Increased Flexibility. 452
Increased Reusability and Productivity. 452

14.3 A Comparison of Fundamental Concepts. 453
Classes and Objects. 453
Methods and Attributes. 454
Messages . 454
Interfaces . 456

14.4 A Comparison of Design Principles 457
Encapsulation . 458
Inheritance . 459

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxv

Generalization and Specialization. 461
Abstraction . 463
Polymorphism . 463
Open-Closed Principle (OCP). 465
Don’t Repeat Yourself (DRY) . 465
Single Responsibility Principle (SRP) . 466
Delegation . 468
Association . 469
Composition . 470
Aggregation. 471

14.5 Guidelines for Designing Service-Oriented Classes. . . . 472
Implement Class Interfaces . 473
Limit Class Access to Interfaces. 473
Do Not Define Public Attributes in Interfaces 473
Use Inheritance with Care . 473
Avoid Cross-Service “has-a” Relationships 474
Use Abstract Classes for Modeling, Not Design 474
Use Façade Classes . 474

Chapter 15: Supporting Practices 477

15.1 Service Profiles . 478
Service-Level Profile Structure . 478
Capability Profile Structure . 480
Additional Considerations . 482

15.2 Vocabularies . 483
Service-Oriented Computing Terms . 484
Service Classification Terms . 484
Types and Associated Terms . 485
Design Principle Application Levels . 487

15.3 Organizational Roles . 488
Service Analyst . 490
Service Architect . 490
Service Custodian . 491
Schema Custodian . 491
Policy Custodian . 492

xxvi Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxvi

Contents xxvii

Service Registry Custodian. 492
Technical Communications Specialist. 493
Enterprise Architect. 493
Enterprise Design Standards Custodian (and Auditor). 494

Chapter 16: Mapping Service-Orientation Principles
to Strategic Goals 497

16.1 Principles that Increase Intrinsic Interoperability 498

16.2 Principles that Increase Federation 501

16.3 Principles that Increase Vendor Diversification Options . 501

16.4 Principles that Increase Business and Technology
Domain Alignment. 502

16.5 Principles that Increase ROI . 504

16.6 Principles that Increase Organizational Agility 505

16.7 Principles that Reduce the Overall Burden of IT. 507

PART IV: APPENDICES

Appendix A: Case Study Conclusion 513

Appendix B: Process Descriptions 517

B.1 Delivery Processes . 518
Bottom-Up vs. Top-Down . 518
The Inventory Analysis Cycle . 520
Inventory Analysis and Service-Oriented Design 521
Choosing a Delivery Strategy . 521

B.2 Service-Oriented Analysis Process 522
Define Analysis Scope . 522
Identify Affected Systems . 523
Perform Service Modeling. 523

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxvii

B.3 Service Modeling Process . 523

B.4 Service-Oriented Design Processes. 525
Design Processes and Service Models 526
Service Design Processes and Service-Orientation 527

Appendix C: Principles and Patterns
Cross-Reference 529

Additional Resources . 533

About the Author . 535

About the Photos . 537

Index . 539

xxviii Contents

00_0132344823_FM.qxd 6/13/07 5:11 PM Page xxviii

3.1 Design Fundamentals

3.2 Introduction to Service-Oriented Computing

3.3 Goals and Benefits of Service-Oriented Computing

3.4 Case Study Background

Chapter 3

Service-Oriented Computing and SOA

04_0132344823_03.qxd 6/13/07 4:43 PM Page 25

One of the most challenging aspects of writing about or discussing technology is
using industry terminology. Many IT terms suffer from wide-spread ambiguity,

which sometimes makes having even the simplest conversation difficult. Take IT pro-
fessionals from different organizations, put them in the same room, and you’ll
very likely hear questions like, “What exactly do you mean by component?” or “What
is your definition of service?” or, my personal favorite, “What kind of SOA are you
referring to?”

Fortunately, the primary subject matter of this book is very clear. We describe a distinct
approach to designing solution logic. To ensure that the descriptions of associated top-
ics are easily understood, a communications framework needs to be established, com-
prised of a collection of terms with very explicit definitions. That is what this chapter is
dedicated to providing.

3.1 Design Fundamentals

Before we can begin exploring the details of service-oriented computing, we first need
to establish some basic design terminology. The books in this series use a common
vocabulary comprised of the following design-related terms:

• Design Characteristic

• Design Principle

• Design Paradigm

• Design Pattern

• Design Pattern Language

• Design Standard

• Best Practice

Depending on your sources, you will find differing definitions for these terms. More
often than not, though, you will notice that they all are somewhat intertwined. The fol-
lowing sections explain each term and conclude with a section that illustrates how they
form a common, fundamental design framework.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 26

3.1 Design Fundamentals 27

Design Characteristic

A characteristic of something is simply an attribute or quality. An automated business
solution will have numerous unique characteristics that were established during its ini-
tial design (Figure 3.1). Hence, the type of design characteristic we are interested in is a
specific attribute or quality of a body of solution logic that we document in a design
specification and plan to realize in development.

Figure 3.1
In this simple example, three distinct application designs (A, B, C) are established, each with its
own list of design characteristics. We will continue to reference these applications in the upcoming
sections. (Note that the small squares represent units of solution logic, solid arrows
represent reuse or shared access, and dashed arrows represent state data transfer.)

Service-orientation emphasizes the creation of very specific design characteristics, while
also de-emphasizing others. It is important to note that almost every design characteris-
tic we explore is attainable to a certain measure. This means that it is generally not about
whether solution logic does or does not have a certain characteristic; it is almost always
about the extent to which a characteristic can or should be realized.

Although each system can have its own unique characteristics, we are primarily inter-
ested in establishing common design characteristics. Increased commonality ensures an

04_0132344823_03.qxd 6/13/07 4:43 PM Page 27

increased degree of consistency, making different kinds of solution logic more alike.
When things are more alike they become more predictable. In the world of distributed,

shareable logic, predictability is a good thing. Predictable design characteristics lead to
predictable behavior. This, in turn, leads to increased reliability and the opportunity to
leverage solution logic in many different ways.

Much of this book is dedicated to providing a means of establishing a specific collection
of design characteristics that spread consistency, predictability, and reliability on many
levels and for different purposes.

Design Principle

A principle is a generalized, accepted industry practice. In other words, it’s something
others are doing or promoting in association with a common objective. You can compare
a principle with a best practice in that both propose a means of accomplishing some-
thing based on past experience or industry-wide acceptance.

When it comes to building solutions, a design principle represents a highly recommended
guideline for shaping solution logic in a certain way and with certain goals in mind (Fig-
ure 3.2). These goals are usually associated with establishing one or more specific design
characteristics (as a result of applying the principle).

28 Chapter 3: Service-Oriented Computing and SOA

Figure 3.2
The repeated application of design principles increases the amount of common design characteris-
tics. In this case, the coupling between solution logic units A and B has been loosened (as indi-
cated by a reduction of connection points).

04_0132344823_03.qxd 6/13/07 4:43 PM Page 28

3.1 Design Fundamentals 29

For example, we can have a principle as fundamental as one that states that solution logic
should be distributable. Applying this principle results in the solution logic being parti-
tioned into individually distributable units. This then establishes the distinct design char-
acteristic of the solution logic becoming componentized. This is not only an example of a
very broad design principle, but it is also the starting point for service-orientation.

The eight design principles documented in this book provide rules and guidelines that
help determine exactly how solution logic should be decomposed and shaped into dis-
tributable units. A study of these principles further reveals what design characteristics
these units should have to be classified as “quality” services capable of fulfilling the
vision and goals associated with SOA and service-oriented computing.

Design Paradigm

There are many meanings associated with the term “paradigm.” It can be an approach
to something, a school of thought regarding something, or a combined set of rules that
are applied within a predefined boundary.

A design paradigm within the context of business automation is generally considered a
governing approach to designing solution logic. It normally consists of a set of comple-
mentary rules or principles that collectively define the overarching approach repre-
sented by the paradigm (Figure 3.3).

Figure 3.3
Because a design paradigm represents a collection of design principles, it further increases the
degree of commonality across different bodies of solution logic. In the example, the amount of
reuse in A and B has increased.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 29

Object-orientation (or object-oriented design) is a classic example of an accepted design
paradigm. It provides a set of principles that shape componentized solution logic in cer-
tain ways so as to fulfill a specific set of goals.

Along those very same lines, service-orientation represents its own distinct design par-
adigm. Like object-orientation, it is a paradigm that applies to distributed solution logic.
However, because some of its principles differ from those associated with object-
orientation (as explained in Chapter 14), it can result in the creation of different types of
design characteristics.

Design Pattern

We’ve established that service-orientation is a design paradigm comprised of a set of
design principles, each of which provides a generalized rule or guideline for realizing
certain design characteristics. The paradigm itself sounds pretty complete, and it actu-
ally is. However, to successfully apply it in the real world requires more than just a the-
oretical understanding of its principles.

Service designers will be regularly faced with obstacles and challenges when attempt-
ing to apply a design paradigm because the realization of desired design characteristics
is frequently complicated by various factors, including:

• Constraints imposed by the technology being used to build and/or host the units
of solution logic.

• Constraints imposed by technology or systems that reside alongside the deployed
units of solution logic.

• Constraints imposed by the requirements and priorities of the project delivering
the units of solution logic.

A design pattern describes a common problem and provides a corresponding solution
(Figure 3.4). It essentially documents the solution in a generic template format so that it
can be repeatedly applied. Knowledge of design patterns not only arms you with an
understanding of the potential problems designs may be subjected to, it provides
answers as to how these problems are best dealt with.

30 Chapter 3: Service-Oriented Computing and SOA

04_0132344823_03.qxd 6/13/07 4:43 PM Page 30

3.1 Design Fundamentals 31

Figure 3.4
Patterns provide recommended solutions for com-
mon design problems. In this simplified example, a
pattern suggests we reduce external access to a
database to increase application autonomy.

Design Pattern Language

The application of one design pattern can raise new issues or problems for which
another pattern may be required. A collection of related patterns can establish a formal-
ized expression of a design process whereby each addresses a primary decision point.
Combining patterns in this manner forms the basis of a pattern language.

NOTE

Appendix C provides cross-references of design principles and associ-
ated design patterns documented as part of the pattern catalog
published in SOA: Design Patterns.

Design patterns are born out of experience. Pioneers in any field had to undergo cycles
of trial and error and by learning from what didn’t work, approaches that finally did
achieve their goals were developed. When a problem and its corresponding solution
were identified as sufficiently common, the basis of a design pattern was formed. Design
patterns can be further combined into compound patterns that solve larger problems
and a series of patterns can form the basis of a pattern language, as explained next.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 31

Design Standard

For an organization to successfully apply a design paradigm, it will require more than
an adherence to the associated design principles and a knowledge of supporting design
patterns. Every organization will have unique strategic goals and unique enterprise
environments. These form a distinct set of requirements and constraints that need to be
accommodated within solution designs.

32 Chapter 3: Service-Oriented Computing and SOA

Figure 3.5
A sequence of related design patterns formalize the primary decision
points of a design paradigm. In this example, the logic in application
design B is decomposed as a result of one pattern, and then further
decomposed as a result of another. Subsequent fundamental patterns
continue to shape the logic.

NOTE

The fundamental paradigm and underlying philosophies of service-orien-
tation and SOA are expressed through a basic pattern language as part
of SOA: Design Patterns.

A pattern language is essentially comprised of a chain of related design patterns that
establish a configurable sequence in which the patterns can be applied (Figure 3.5). Such
a language provides a highly effective means of communicating fundamental aspects of
a given design approach because it supplies detailed documentation of each major step
in a design process that shapes the design characteristics of solution logic.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 32

3.1 Design Fundamentals 33

Figure 3.6
In this case, a design standard requires that C’s
original design be altered to remove access to a
shared, external state database.

As with design principles, the application of design standards results in the creation of
specific design characteristics. As with design patterns, design standards foster and
refine these characteristics to avoid potential problems and to strengthen the overall
solution design. In fact, it is recommended for design standards to be based upon or
even derived from industry design principles and patterns.

Can you have design standards without design principles? Yes, it is actually common to
have many design standards. Only some may need to relate back to principles in order
to see through the application of the overall design paradigm. Different design stan-
dards may also be created to simply support other goals or compensate for constraints
imposed by specific environmental, cultural, or technology-related factors. Although
some standards may have no direct association with accepted design principles, there
should always be an effort to keep all standards in relative alignment.

Can you have design principles without design standards? It usually depends on how
committed an organization is to the governing design paradigm. If it sees potential in
only using a subset of the paradigm’s principles, then some principles may not be sup-
ported by corresponding design standards. However, this approach is not common.

Essentially, as with design principles, through standardization we want to build consis-
tency into specific design characteristics—consistency in the quality of the characteris-
tics and in how frequently they are implemented.

Design standards are (usually mandatory) design conventions customized to consistently
pre-determine solution design characteristics in support of organizational goals and
optimized for specific enterprise environments. It is through the use of internal design
standards that organizations can consistently deliver solutions tailored to their environ-
ments, resources, goals, and priorities (Figure 3.6).

04_0132344823_03.qxd 6/13/07 4:43 PM Page 33

Best Practice

A best practice is generally considered a technique or approach to solving or preventing
certain problems (Figure 3.7). It is usually a practice that has industry recognition and
has emerged from past industry experience.

34 Chapter 3: Service-Oriented Computing and SOA

NOTE

One point of clarification often worth making when discussing standards is the difference
between design standards and industry standards. The former, as we just described, refers
to internal or custom standards that apply to the design of solution logic and systems for a
particular enterprise. The latter generally represents open technology standards, such as
those that comprise the XML and Web services platforms.

Sometimes organizations assume that if they use industry standards, they will end up with a
standardized IT enterprise. While those XML and Web services specifications that have
become ratified and accepted industry standards do establish a level of technology stan-
dardization, it is still up to an organization to consistently position and apply these technolo-
gies. Without design standards, industry standards can easily fail in achieving their potential.

Figure 3.7
Best practices provide guidance in the form of general “lessons learned.” In the example,
it is suggested that the on-going maintenance of reusable solution logic units from all
applications fall under a single custodian.

How then is a best practice differentiated from a design principle? In this book we make a
clear distinction in that a design principle is limited to design only. Abest practice can relate

04_0132344823_03.qxd 6/13/07 4:43 PM Page 34

3.1 Design Fundamentals 35

to anything from project delivery to organizational issues, governance, or process. A
design principle could be considered a best practice associated only with solution design.

Note that several best practices are provided throughout this book in support of applying
design principles. An additional set of more detailed practices is located in Chapter 15.

A Fundamental Design Framework

Each of the previous sections described a piece of intelligence that can act as input into
an overall design process. When designing service-oriented solutions it is practically
inevitable that some or all of these pieces be used together. It is therefore important to
understand how they relate to each other so that we can gain a foreknowledge of how
and where they are best utilized.

Figure 3.8 shows how some of the more common parts of a design framework typically
inter-relate and highlights how central the use of design principles can be. Figure 3.9
expands on this perspective by illustrating how the use of design patterns can further
support and extend a basic design framework. Finally, Figure 3.10 shows how the parts
of a design framework can ultimately help realize the application of the overarching
design paradigm.

Figure 3.8
Fundamental design terms establish a basic taxonomy used throughout the upcoming chapters.
This diagram hints at how some parts of a basic design framework can relate to each other.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 35

36 Chapter 3: Service-Oriented Computing and SOA

Figure 3.9
Design patterns provide additional intelligence that can enrich a design framework with a collection of
proven solutions to common problems.

Figure 3.10
The purpose of applying a design paradigm is the achievement of cer-
tain goals. It is important to emphasize how design standards, design
patterns, and best practices can all support the successful application
of a design paradigm and, as a result, the attainment of its goals.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 36

3.2 Introduction to Service-Oriented Computing 37

SUMMARY OF KEY POINTS

• A design principle is an accepted design guideline or practice that, when
applied, results in the realization of specific design characteristics.

• A design paradigm represents a set of complementary design principles that
are collectively applied in support of common goals.

• A design pattern identifies a common problem and provides a recommended
solution.

• A design standard is a convention internal and specific to an enterprise that
may or may not be derived from a design principle or pattern.

3.2 Introduction to Service-Oriented Computing

Service-oriented computing represents a new generation distributed computing plat-
form. As such, it encompasses many things, including its own design paradigm and
design principles, design pattern catalogs, pattern languages, a distinct architectural
model, and related concepts, technologies, and frameworks.

It sounds like a pretty big umbrella, and it is. Service-oriented computing builds upon
past distributed computing platforms and adds new design layers, governance consid-
erations, and a vast set of preferred implementation technologies. That’s why taking the
time to understand its underlying mechanics before proceeding to the actual design and
construction phases of a delivery project is time well spent.

To better appreciate the fundamental complexion of a typical service-oriented computing
platform we need to describe each of its primary parts, which we’ll refer to as elements:

• Service-Oriented Architecture

• Service-Orientation

• Service-Oriented Solution Logic

• Services

• Service Compositions

• Service Inventory

The following sections define each of these elements and conclude with a section that
explains how they can inter-relate conceptually and physically. The basic symbols intro-
duced in these sections are used repeatedly within subsequent parts of this book.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 37

Service-Oriented Architecture

SOA establishes an architectural model that aims to enhance the efficiency, agility, and
productivity of an enterprise by positioning services as the primary means through
which solution logic is represented in support of the realization of strategic goals asso-
ciated with service-oriented computing.

On a fundamental basis, the service-oriented computing platform revolves around the
service-orientation design paradigm and its relationship with service-oriented architec-
ture. In fact, the term “service-oriented architecture” and its associated acronym have
been used so broadly by the media and within vendor marketing literature that it has
almost become synonymous with service-oriented computing itself. It is therefore very
important to make a clear distinction between what SOA actually is and how it relates
to other service-oriented computing elements.

As a form of technology architecture, an SOA implementation can consist of a combina-
tion of technologies, products, APIs, supporting infrastructure extensions, and various
other parts (Figure 3.11). The actual face of a deployed service-oriented architecture is
unique within each enterprise; however it is typified by the introduction of new tech-
nologies and platforms that specifically support the creation, execution, and evolution
of service-oriented solutions. As a result, building a technology architecture around the
service-oriented architectural model establishes an environment suitable for solution
logic that has been designed in compliance with service-orientation design principles.

38 Chapter 3: Service-Oriented Computing and SOA

Figure 3.11
Container symbols are used to represent architectural implementation environments.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 38

3.2 Introduction to Service-Oriented Computing 39

Service-Orientation, Services, and Service-Oriented Solution Logic

Service-orientation is a design paradigm comprised of a specific set of design principles.
The application of these principles to the design of solution logic results in service-
oriented solution logic. The most fundamental unit of service-oriented solution logic is the
service.

Services exist as physically independent software programs with distinct design char-
acteristics that support the attainment of the strategic goals associated with service-
oriented computing. Each service is assigned its own distinct functional context and is
comprised of a set of capabilities related to this context. Those capabilities suitable for
invocation by external consumer programs are commonly expressed via a published
service contract (much like a traditional API).

Figure 3.12 introduces the symbol used in this book to represent a service from an
endpoint perspective. See the SOA and Web Services section for an introduction to the
symbols used to illustrate a physical design perspective of services implemented as
Web services. Note also that services and service-orientation are explored in detail in
Chapter 4.

Figure 3.12
The yellow sphere symbol is used to represent a service.
Alternatively, the chorded circle symbol introduced in
Chapter 1 can also be used.

Service Compositions

A service composition is a coordinated aggregate of services. As explained in the Effects of
Service-Orientation on the Enterprise section in Chapter 4, a composition of services (Fig-
ure 3.13) is comparable to a traditional application in that its functional scope is usually
associated with the automation of a parent business process.

Figure 3.13
The symbol comprised of three connected spheres represents
a service composition. Other, more detailed representations
are based on the use of chorded circle symbols to illustrate
which service capabilities are actually being composed.

The consistent application of service-orientation design principles leads to the creation
of services with functional contexts that are agnostic to any one business process. These
agnostic services are therefore capable of participating in multiple service compositions.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 39

As further discussed in Chapters 13 and 16, the ability for a service to be naturally and
repeatedly composable is fundamental to attaining several of the key strategic goals of
service-oriented computing. Therefore, many of the design characteristics that distin-
guish a service enable it to effectively participate in service compositions.

Service Inventory

A service inventory is an independently standardized and governed
collection of complementary services within a boundary that repre-
sents an enterprise or a meaningful segment of an enterprise. Figure
3.14 establishes the symbol used to represent a service inventory in
this book.

An IT enterprise may include a service inventory that represents
the extent to which SOA has been adopted. Larger initiatives may
even result in the enterprise in its entirety being comprised of an
enterprise-wide service inventory. Alternatively, an enterprise envi-
ronment can contain multiple service inventories, each of which can
be individually standardized, governed, and supported by its own
service-oriented technology architecture.

Service inventories are typically created through top-down delivery processes that result
in the definition of service inventory blueprints. The subsequent application of service-
orientation design principles and custom design standards throughout a service inven-
tory is of paramount importance so as to establish a high degree of native inter-service
interoperability. This supports the repeated, agile creation of effective service composi-
tions. (Note that service inventory blueprints are explained later in this chapter.)

Understanding Service-Oriented Computing Elements

We’ll be making reference to the previously defined elements throughout this book.
Understanding them individually is just as important as understanding how they can
relate to each other because these relationships establish some of the most fundamental
dynamics of service-oriented computing.

Let’s therefore revisit these elements with an emphasis on how each ties into others:

• Service-oriented architecture represents a distinct form of technology architecture
designed in support of service-oriented solution logic which is comprised of services and
service compositions shaped by and designed in accordance with service-orientation.

40 Chapter 3: Service-Oriented Computing and SOA

Figure 3.14
The service inventory
symbol is comprised
of yellow spheres
within a blue
container.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 40

3.2 Introduction to Service-Oriented Computing 41

• Service-orientation is a design paradigm comprised of service-orientation design
principles. When applied to units of solution logic, these principles create services
with distinct design characteristics that support the overall goals and vision of
service-oriented computing.

• Service-oriented computing represents a new generation computing platform that
encompasses the service-orientation paradigm and service-oriented architecture with
the ultimate goal of creating and assembling one or more service inventories.

These relationships are further illustrated in Figure 3.15.

Figure 3.15
A conceptual view of how the elements of service-oriented computing can inter-relate.

To fully appreciate how these elements are ultimately used we need to explore how they
translate into the real world. To do so, we need to clearly distinguish the role and posi-
tion of each element within a physical implementation perspective, as follows:

04_0132344823_03.qxd 6/13/07 4:43 PM Page 41

• Service-oriented solution logic is implemented as services and service compositions
designed in accordance with service-orientation design principles.

• A service composition is comprised of services that have been assembled to provide
the functionality required to automate a specific business task or process.

• Because service-orientation shapes many services as agnostic enterprise resources,

one service may be invoked by multiple consumer programs, each of which can
involve that same service in a different service composition.

• A collection of standardized services can form the basis of a service inventory
that can be independently administered within its own physical deployment
environment.

• Multiple business processes can be automated by the creation of service composi-
tions that draw from a pool of existing agnostic services that reside within a service
inventory.

• Service-oriented architecture is a form of technology architecture optimized in sup-
port of services, service compositions, and service inventories.

This implementation-centric view brings to light how service-oriented computing can
change the overall complexion of an enterprise. Because the majority of services deliv-
ered are positioned as reusable resources agnostic to business processes, they do not
belong to any one application silo. By dissolving boundaries between applications, the
enterprise is increasingly represented by a growing body of services that exist within an
expanding service inventory (Figure 3.16).

42 Chapter 3: Service-Oriented Computing and SOA

Figure 3.16
A service inventory establishes a pool of services, many of which will be deliberately designed to be reused
within multiple service compositions.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 42

3.2 Introduction to Service-Oriented Computing 43

Service Models

When building various types of services, it becomes evident that they can be categorized
depending on:

• the type of logic they encapsulate

• the extent of reuse potential this logic has

• how this logic relates to existing domains within the enterprise

As a result, there are three common classifications that represent the primary service
models referenced throughout this book:

• Entity Services

• Task Services

• Utility Services

The use of these service models results in the creation of logical service abstraction
layers, as shown in Figure 3.17.

NOTE

So far, an introductory perspective of service-oriented computing and its
key elements has been established. However, when making reference to
the service-oriented computing platform, we need to acknowledge the
vast amounts of vendor development and runtime technologies that
comprise its technology landscape. It is the makeup of these platforms
and their combined technology innovations that have helped drive the
evolution of service-oriented computing in the mainstream IT industry.

Figure 3.17
Common service abstraction layers established by service models, each of which is comprised of services
shaped through the application of the service-orientation paradigm. Though these layers tend to form a
natural composition hierarchy, there are no rules as to how services can be assembled.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 43

Each of these three service models is further explained in the following sections.

Entity Services

In just about every enterprise, there will
be business model documents that define
the organization’s relevant business enti-
ties. Examples of business entities
include customer, employee, invoice,

and claim. The entity service model
(Figure 3.18) represents a business-
centric service that bases its functional
boundary and context on one or more
related business entities. It is considered
a highly reusable service because it is
agnostic to most parent business
processes. As a result, a single entity
service can be leveraged to automate
multiple parent business processes.

Entity services are also known as entity-
centric business services or business entity
services.

Task Services

A business service with a functional
boundary directly associated with a spe-
cific parent business task or process is
based on the task service model (Figure
3.19). This type of service tends to have
less reuse potential and is generally posi-
tioned as the controller of a composition
responsible for composing other, more
process-agnostic services.

When discussing task services, one point
of clarification often required is in rela-
tion to entity service capabilities. Each

44 Chapter 3: Service-Oriented Computing and SOA

Figure 3.18
An example of an entity service. Several of its capabilities are
reminiscent of traditional CRUD (create, read, update, delete)
methods.

Figure 3.19
An example of a task service with a sole exposed capability
required to initiate its encapsulated parent business process.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 44

3.2 Introduction to Service-Oriented Computing 45

capability essentially encapsulates business process logic in that it carries out a sequence
of steps to complete a specific task. An entity Invoice service, for example, may have an
Add capability that contains process logic associated with creating a new invoice record.

How then is what a task service encapsulates different from what an entity service’s
capabilities contain? The primary distinction has to do with the functional scope of the
capability. The Invoice service’s Add capability is focused solely on the processing of an
invoice document. To carry out this process may require that the capability logic inter-
act with other services representing different business entities, but the functional scope
of the capability is clearly associated with the functional context of the Invoice service.

If, however, we had a billing consolidation process that retrieved numerous invoice and
PO records, performed various calculations, and further validated consolidation results
against client history billing records, we would have process logic that spans multiple
entity domains and does not fit cleanly within a functional context associated with a
business entity. This would typically constitute a “parent” process in that it consists of
processing logic that needs to coordinate the involvement of multiple services.

Services with a functional context defined by a parent business process or task can be
developed as standalone Web services or components—or—they may represent a busi-
ness process definition hosted within an orchestration platform. In the latter case, the
design characteristics of the service are somewhat distinct due to the specific nature of
the underlying technology. In this case, it may be preferable to qualify the service model
label accordingly. This type of service is referred to as the orchestrated task service.

Task services are also known as task-centric business services or business process services.
Orchestrated task services are also known as process services, business process services, or
orchestration services.

NOTE

There is a potential point of confusion when referring to these types of
services as “business process services” or when renaming the task
service layer to “business process layer.” Just about every capability
within every business service encapsulates an extent of business
process logic. Establishing a task service layer does not abstract or
centralize all business process logic. Its purpose is primarily to abstract
non-agnostic process logic in support of agnostic service models. If
there’s a preference to incorporate the term “business process” within
the title of this service layer, then it’s recommended that it be further
qualified with “parent” (as in the “parent business process layer”).

04_0132344823_03.qxd 6/13/07 4:43 PM Page 45

Utility Services

Each of the previously described service models has a very clear focus on representing
business logic. However, within the realm of automation, there is not always a need to
associate logic with a business model or process. In fact, it can be highly beneficial to
deliberately establish a functional context that is non-business-centric. This essentially
results in a distinct, technology-oriented service layer.

The utility service model (Figure 3.20)
accomplishes this. It is dedicated to pro-
viding reusable, cross-cutting utility
functionality, such as event logging,

notification, and exception handling. It is
ideally application agnostic in that it can
consist of a series of capabilities that
draw from multiple enterprise systems
and resources, while making this func-
tionality available within a very specific
processing context.

Utility services are also known as applica-
tion services, infrastructure services, or tech-
nology services.

46 Chapter 3: Service-Oriented Computing and SOA

Figure 3.20
An example of a utility service providing a set of capabilities
associated with proprietary data format transformation.

NOTE

Entity, task, and utility service models are intentionally generic in nature in
that they apply to just about any type of enterprise. Customized variations
can be further derived to fulfill specific types of domain abstraction.

SOA and Web Services

It is very important to view and position SOA as an architectural model that is agnostic
to any one technology platform (Figure 3.21). By doing so, an enterprise is given the free-
dom to continually pursue the strategic goals associated with service-oriented comput-
ing by leveraging future technology advancements. In the current marketplace, the
technology platform most associated with the realization of SOA is Web services.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 46

3.2 Introduction to Service-Oriented Computing 47

Web Services Standards

The Web services platform is defined through a number of industry standards that
are supported throughout the vendor community. This platform can be partitioned into
two clearly identifiable generations, each associated with a collection of standards and
specifications:

• First-Generation Web Services Platform

The original Web services technology platform is comprised of the following core
open technologies and specifications: Web Services Description Language (WSDL),
XML Schema Definition Language (XSD), SOAP (formerly the Simple Object
Access Protocol), UDDI (Universal Description, Discovery, and Integration), and
the WS-I Basic Profile.

These specifications have been around for some time and have been adopted
across the IT industry. However, the platform they collectively represent seriously
lacks several of the quality of service features required to deliver mission critical,
enterprise-level production functionality.

• Second-Generation Web Services Platform (WS-* extensions)

Some of the greatest quality of service-related gaps in the first-generation platform
lie in the areas of message-level security, cross-service transactions, and reliable
messaging. These, along with many other extensions, represent the second-
generation Web services platform. Consisting of numerous specifications that

Figure 3.21
Service-oriented solutions can be comprised of services built as Web services, components, or combinations
of both.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 47

build upon the fundamental first-generation messaging framework, this set of
Web services technologies (generally labeled as “WS-*”) provides a rich feature-set
far more sophisticated both in technology and in design. An example of a WS-*
standard referenced throughout this book is WS-Policy.

Web Services Architecture

A typical Web service is comprised of the following:

• A physically decoupled technical service contract consisting of a WSDL definition,

an XML schema definition, and possibly a WS-Policy definition. This service con-
tract exposes public functions (called operations) and is therefore comparable to a
traditional application programming interface (API).

• A body of programming logic. This logic may be custom-developed for the Web
service, or it may exist as legacy logic that is being wrapped by a Web service in
order for its functionality to be made available via Web services communication
standards. In the case that logic is custom-developed, it generally is created as
components and is referred to as the core service logic (or business logic).

• Message processing logic that exists as a combination of parsers, processors, and
service agents. Much of this logic is provided by the runtime environment, but it
can also be customized. The programs that carry out message-related processing
are primarily event-driven and therefore can intercept a message subsequent to
transmission or prior to receipt. It is common for multiple message processing pro-
grams to be invoked with every message exchange.

A Web service can be associated with temporary roles, depending on its utilization at
runtime. For example, it acts as a service provider when it receives and responds to
request messages, but can also assume the role of service consumer when it is required
to issue request messages to other Web services.

When Web services are positioned within service compositions, it is common for them
to transition through service provider and service consumer roles (additional composi-
tion-related roles are explained in Chapter 13). Note also that regular programs, com-
ponents, and legacy systems can also act as Web service consumers as long as they are
able to communicate using Web services standards.

Figure 3.22 introduces the symbols used to illustrate physical representations of Web
services in this book. Service-orientation principles can affect the design of all displayed
parts.

48 Chapter 3: Service-Oriented Computing and SOA

04_0132344823_03.qxd 6/13/07 4:43 PM Page 48

3.2 Introduction to Service-Oriented Computing 49

Web Services and Service-Oriented Computing

The popularity of Web services preceded that of service-oriented computing. As a result,
their initial use was primarily within traditional distributed solutions wherein they were
most commonly used to facilitate point-to-point integration channels. As the maturity
and adoption of Web services standards increased, so did the scope of their utilization.

Figure 3.22
Three variations of a single Web service showing the different physical parts of its
architecture that come into play, depending on the role it assumes at runtime.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 49

With service-oriented computing comes a distinct architectural model that has been
positioned by the vendor community as one that can fully leverage the open interoper-
ability potential of Web services, especially when individual services are consistently
shaped by service-orientation. For example, when exposing reusable logic as Web serv-
ices, the reuse potential is significantly increased. Because service logic can now be
accessed via a vendor-neutral communications framework, it becomes available to a
wider range of service consumer programs.

Additionally, the fact that Web services provide a communications framework based on
physically decoupled contracts allows each service contract to be fully standardized
independently from its implementation. This facilitates a potentially high level of serv-
ice abstraction while providing the opportunity to fully decouple the service from any
proprietary implementation details. As explored in Part II, all of these characteristics are
desirable when pursuing key principles, such as Standardized Service Contracts, Service
Reusability, Service Loose Coupling, Service Abstraction, and Service Composability.

For example, transformation avoidance is a key goal of Standardized Service Contracts.
As explained in Chapter 6, this principle advocates the standardization of the data
model expressed by the service contract so as to increase intrinsic interoperability by
reducing the need for transformation technologies. As illustrated in Figure 3.23, services
delivered via disparate component platforms still require the transformation of technol-
ogy regardless of whether data types are standardized. Services expressed through Web
service contracts have the potential to avoid transformation altogether.

50 Chapter 3: Service-Oriented Computing and SOA

NOTE

To learn more about first and second-generation Web services technolo-
gies, read the tutorials posted at www.ws-standards.com or visit
www.soaspecs.com and browse through the actual specifications. It is
also important to acknowledge service communication mediums that pro-
vide an alternative to SOAP-based messaging, such as Representational
State Transfer (REST) and Plain Old XML (POX). While these are not cov-
ered in this book, it would be worthwhile reading up on them to under-
stand how they differ and where they are most commonly encountered.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 50

3.2 Introduction to Service-Oriented Computing 51

Service Inventory Blueprints

An ultimate goal of an SOA transition effort is to produce a collection of standardized
services that comprise a service inventory. The inventory can be structured into layers
according to the service models used, but it is the application of the service-orientation
paradigm to all services that positions them as valuable IT assets in full alignment with
the strategic goals associated with the SOA project.

Figure 3.23
Three common data exchange scenarios demonstrating the effect of transformation avoidance.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 51

However, before any services are actually built, it is desirable to establish a conceptual
blueprint of all the planned services for a given inventory. This perspective is docu-
mented in the service inventory blueprint. There are several common business and data
models that, if they exist within an organization, can provide valuable input for this
specification. Examples include business entity models, logical data models, canonical
data and message models, ontologies, and other information architecture models.

A service inventory blueprint is also known as a service enterprise model or a service
inventory model.

Service-Oriented Analysis and Service Modeling

To effectively deliver standardized services in support of building a service inventory, it
is recommended that organizations adopt a methodology specific to SOA and consist-
ing of structured analysis and design processes.

Within SOA projects, these processes are centered around the accurate expression of
business logic through technology, which requires that business analysts play a more
active role in defining the conceptual design of solution logic. This guarantees a higher
degree of alignment between the documented business models and their implementa-
tion as services. Agnostic business services especially benefit from hands-on involve-
ment of business subject matter experts, as the improved accuracy of their business
representation increases their overall longevity once deployed.

Service-oriented analysis establishes a formal analysis process completed jointly by busi-
ness analysts and technology architects. Service modeling, a sub-process of service-
oriented analysis, produces conceptual service definitions called service candidates. Iter-
ations through the service-oriented analysis and service modeling processes result in the
gradual creation of a collection of service candidates documented as part of a service
inventory blueprint.

While the collaborative relationship between business analysts and architects depicted
at the lower half of Figure 3.24 may not be unique to an SOA project, the nature and
scope of the analysis process is.

52 Chapter 3: Service-Oriented Computing and SOA

04_0132344823_03.qxd 6/13/07 4:43 PM Page 52

3.2 Introduction to Service-Oriented Computing 53

Service-Oriented Design

The service-oriented design process uses a set of predefined service candidates from the
service inventory blueprint as a starting point from which they are shaped into actual
physical service contracts.

When carrying out service-oriented design, a clear distinction is made between service
candidates and services. The former represents a conceptual service that has not been
implemented, whereas the latter refers to a physical service.

As shown in Figure 3.25, the traditional (non-standardized) means by which Web serv-
ice contracts are generated results in services that continue to express the proprietary
nature of what they encapsulate. Creating the Web service contract prior to development
allows for standards to be applied so that the federated endpoints established by Web
services are consistent and aligned. This “contract first” approach lies at the heart of
service-oriented design and has inspired separate design processes for services based on
different service models.

Figure 3.24
A look at how the collaboration between business analysts and technology architects changes with SOA projects.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 53

“Service-Oriented Architecture: Concepts,Technology, and Design”

Descriptions of first and second-generation Web services technologies, service models,

service layers and variations of SOA, as well as a mainstream SOA methodology
providing step-by-step process descriptions for service-oriented analysis, service mod-
eling, and service-oriented design are explained in detail in the book Service-Oriented
Architecture: Concepts, Technology, and Design. SOA is fundamental to all of the content in
the remaining chapters and therefore a solid understanding of the concepts behind its
architectural model and technologies commonly used for its implementation is
recommended.

54 Chapter 3: Service-Oriented Computing and SOA

NOTE

Appendix B contains illustrations and brief descriptions of service-ori-
ented analysis and design processes for reference purposes.

Figure 3.25
Unlike the popular process of deriving Web service contracts from existing
components, SOA advocates a specific approach that encourages us to postpone
development until after a custom designed, standardized contract is in place.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 54

3.3 Goals and Benefits of Service-Oriented Computing 55

SUMMARY OF KEY POINTS

• The service-oriented computing platform is comprised of a distinct set of ele-
ments, each of which represents a specific aspect of service-oriented comput-
ing, and all of which are collectively applied to achieve its goals.

• Service models are used to establish service layers by categorizing services
based on the type of logic they encapsulate.

• SOA represents an implementation-agnostic architectural model. However,
Web services currently provide the foremost means of implementing services.

3.3 Goals and Benefits of Service-Oriented Computing

It is very important to establish why both vendor and end-user communities within the
IT industry are going through the trouble of adopting the service-oriented computing
platform and embracing all of the change that comes with it.

The vision behind service-oriented computing is extremely ambitious and therefore also
very attractive to any organization interested in truly improving the effectiveness of its
IT enterprise. A set of common goals and benefits has emerged to form this vision. These
establish a target state for an enterprise that successfully adopts service-orientation.

The upcoming set of sections describe each of these strategic goals and benefits (also dis-
played in Figure 3.26):

• Increased Intrinsic Interoperability

• Increased Federation

• Increased Vendor Diversification Options

• Increased Business and Technology Domain Alignment

• Increased ROI

• Increased Organizational Agility

• Reduced IT Burden

It is beneficial to understand the significance of these goals and benefits prior to study-
ing and applying service-orientation so that design principles are consistently viewed
within a strategic context.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 55

Increased Intrinsic Interoperability

Interoperability refers to the sharing of data. The more interoperable software programs
are, the easier it is for them to exchange information. Software programs that are not
interoperable need to be integrated. Therefore, integration can be seen as a process that
enables interoperability. A goal of service-orientation is to establish native interoper-
ability within services in order to reduce the need for integration (Figure 3.27). In fact,
integration as a concept begins to fade within service-oriented environments (as further
explained in the Effects of Service-Orientation on the Enterprise section in Chapter 4).

56 Chapter 3: Service-Oriented Computing and SOA

NOTE

As previously explained, the term “SOA” has been used so much in the
media and within marketing literature that it has become synonymous with
what the entire service-oriented computing platform represents. There-
fore, the goals and benefits listed here are frequently associated with SOA
as well.

Figure 3.26
The seven identified goals are inter-related and can be further categorized into two
groups: strategic goals and resulting benefits. Increased organization agility, increased
ROI, and reduced IT burden are concrete benefits resulting from the attainment of the
remaining four goals.

An important message of this book in general is that there is a concrete link between suc-
cessfully applying service-orientation design principles and successfully attaining these
specific goals and benefits (a point which is further detailed in Chapter 16).

04_0132344823_03.qxd 6/13/07 4:43 PM Page 56

3.3 Goals and Benefits of Service-Oriented Computing 57

Interoperability is specifically fostered through the consistent application of design
principles and design standards. This establishes an environment wherein services pro-
duced by different projects at different times can be repeatedly assembled together into
a variety of composition configurations to help automate a range of business tasks.

Intrinsic interoperability represents a fundamental goal of service-orientation that estab-
lishes a foundation for the realization of other strategic goals and benefits. Contract stan-
dardization, scalability, behavioral predictability, and reliability are just some of the
design characteristics required to facilitate interoperability, all of which are addressed
by the service-orientation principles documented in this book.

How specifically service-orientation design principles foster interoperability within
services is explained in the Service-Orientation and Interoperability section of Chapter 4.

Figure 3.27
Services are designed to be intrinsically interoperable regardless of when and for which purpose
they are delivered. In this example, the intrinsic interoperability of the Invoice and Timesheet
services delivered by Project Teams A and B allow them to be combined into a new service
composition by Project Team C.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 57

Increased Federation

A federated IT environment is one where resources and applications are united while
maintaining their individual autonomy and self-governance. SOA aims to increase a fed-
erated perspective of an enterprise to whatever extent it is applied. It accomplishes this
through the widespread deployment of standardized and composable services each of
which encapsulates a segment of the enterprise and expresses it in a consistent manner.

In support of increasing federation, standardization becomes part of the extra up-front
attention each service receives at design time. Ultimately this leads to an environment
where enterprise-wide solution logic becomes naturally harmonized, regardless of the
nature of its underlying implementation (Figure 3.28).

58 Chapter 3: Service-Oriented Computing and SOA

Figure 3.28
Three service contracts establishing a federated set
of endpoints, each of which encapsulates a different
implementation.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 58

3.3 Goals and Benefits of Service-Oriented Computing 59

When service-oriented solutions are built via the Web services technology platform, the
level of attainable federation is further elevated because services can leverage the non-
proprietary nature of the technologies themselves. However, even when using Web
services the key success factor to achieving true unity and federation remains the
application of design principles and standards.

Increased Vendor Diversification Options

Vendor diversification refers to the ability an organization has to pick and choose “best-
of-breed” vendor products and technology innovations and use them together within
one enterprise. It is not necessarily beneficial for an organization to have a vendor-
diverse environment; however, it is beneficial to have the option to diversify when
required. To have and retain this option requires that its technology architecture not be
tied or locked into any one specific vendor platform.

This represents an important state for an enterprise in that it provides the constant free-
dom for an organization to change, extend, and even replace solution implementations
and technology resources without disrupting the overall, federated service architecture.
This measure of governance autonomy is attractive because it prolongs the lifespan and
increases the financial return of automation solutions.

By designing a service-oriented architecture in alignment with but neutral to major ven-
dor SOA platforms and by positioning service contracts as standardized endpoints
throughout a federated enterprise, proprietary service implementation details can be
abstracted to establish a consistent inter-service communications framework. This pro-
vides organizations with constant options by allowing them to diversify their enter-
prises as needed (Figure 3.29).

Vendor diversification is further supported by taking advantage of the standards-based,

vendor-neutral Web services framework. Because they impose no proprietary commu-
nication requirements, Web services further decrease dependency on vendor platforms.
As with any other implementation medium, though, Web services need to be shaped
and standardized through service-orientation in order to become a federated part of
an SOA.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 59

Increased Business and Technology Domain Alignment

The extent to which IT business requirements are fulfilled is often associated with the
accuracy with which business logic is expressed and automated by solution logic.
Although initial applications have traditionally been designed to address immediate
and tactical requirements, it has historically been challenging to keep applications in
alignment with business needs when the nature and direction of the business changes.

Service-oriented computing introduces a design paradigm that promotes abstraction on
many levels. One of the most effective means by which functional abstraction is applied
is the establishment of service layers that accurately encapsulate and represent business
models. By doing so, common, pre-existing representations of business logic (business
entities, business processes) can exist in implemented form as physical services.

This is accomplished by incorporating a structured analysis and modeling process that
requires the hands-on involvement of business subject matter experts in the actual defi-
nition of the conceptual service candidates (as explained in the Service-Oriented Analysis

60 Chapter 3: Service-Oriented Computing and SOA

Figure 3.29
A service composition consisting of three services, each of which encapsulates a different vendor automa-
tion environment. If service-orientation is adequately applied to the services, underlying disparity will not
inhibit their ability to be combined into effective compositions.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 60

3.3 Goals and Benefits of Service-Oriented Computing 61

and Service Modeling section). The result-
ing service designs are capable of align-
ing automation technology with business
intelligence on an unprecedented level
(Figure 3.30).

Furthermore, the fact that services are
designed to be intrinsically interoperable
directly facilitates business change. As
business processes are augmented in
response to various factors (business
climate changes, new competitors, new
policies, new priorities, etc.) services can
be reconfigured into new compositions
that reflect the changed business logic.
This allows a service-oriented technol-
ogy architecture to evolve in tandem
with the business itself.

Increased ROI

Measuring the return on investment (ROI) of automated solutions is a critical factor in
determining just how cost effective a given application or system actually is. The greater
the return, the more an organization benefits from the solution. However, the lower the
return, the more the cost of automated solutions eats away at an organization’s budgets
and profits.

Traditional, silo-based applications tend to get extended over time, resulting in poten-
tially complex environments with effort-intensive maintenance requirements. Combined
with the emergence of ever-growing, non-federated integration architectures that can be
even more difficult to maintain and evolve, the average IT department can demand a sig-
nificant amount of an organization’s overall operational budget. For many organizations,

the financial overhead required by IT is a primary concern because it often continues to
rise without demonstrating any corresponding increase in business value.

Service-oriented computing advocates the creation of agnostic solution logic—logic that
is agnostic to any one purpose and therefore useful for multiple purposes. This multi-
purpose or reusable logic fully leverages the intrinsically interoperable nature of serv-
ices. Agnostic services have increased reuse potential that can be realized by allowing

Figure 3.30
Services with business-centric functional contexts are care-
fully modeled to express and encapsulate corresponding
business models and logic.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 61

them to be repeatedly assembled into different compositions. Any one agnostic service
can therefore find itself being repurposed numerous times to automate different busi-
ness processes as part of different service-oriented solutions.

With this benefit in mind, additional up-front expense and effort is invested into every
piece of solution logic so as to position it as an IT asset for the purpose of repeatable,

long-term financial returns. As shown in Figure 3.31, the emphasis on increasing ROI
typically goes beyond the returns traditionally sought as part of past reuse initiatives.
This has much to do with the fact that service-orientation aims to establish reuse as a
common, secondary characteristic within most services.

62 Chapter 3: Service-Oriented Computing and SOA

Figure 3.31
An example of the types of formulas being used to calculate ROI for SOA projects. More is invested in
the initial delivery with the goal of benefiting from increased subsequent reuse.

It is important to acknowledge that this goal is not simply tied to the benefits tradition-
ally associated with software reuse. Proven commercial product design techniques are
incorporated and blended with existing enterprise application delivery approaches
to form the basis of a distinct set of service-oriented analysis and design processes
(as described earlier in the Service-Oriented Analysis and Service Modeling and Service-
Oriented Design sections).

04_0132344823_03.qxd 6/13/07 4:43 PM Page 62

3.3 Goals and Benefits of Service-Oriented Computing 63

Increased Organizational Agility

Agility, on an organizational level, refers to the efficiency with which an organization
can respond to change. Increasing organizational agility is very attractive to corpora-
tions, especially those in the private sector. Being able to more quickly adapt to industry
changes and outmaneuver competitors has tremendous strategic significance.

An IT department can sometimes be perceived as a bottleneck, hampering desired respon-
siveness by requiring too much time or resources to fulfill new or changing business
requirements. This is one of the reasons agile development methods have gained popu-
larity as they provide a means of addressing immediate, tactical concerns more rapidly.

Service-oriented computing is very much geared toward establishing wide-spread orga-
nizational agility. When service-orientation is applied throughout an enterprise, it
results in the creation of services that are highly standardized and reusable and there-
fore agnostic to parent business processes and specific application environments.

As a service inventory is comprised of more and more of these agnostic services, an
increasing percentage of its overall solution logic belongs to no one application envi-
ronment. Instead, because these services have been positioned as reusable IT assets, they
can be repeatedly composed into different configurations. As a result, the time and effort
required to automate new or changed business processes is correspondingly reduced
because development projects can now be completed with significantly less custom
development effort (Figure 3.32).

The net result of this fundamental shift in project delivery is heightened responsiveness
and reduced time to market potential, all of which translates into increased organiza-
tional agility.

NOTE

Organizational agility represents a target state that organizations work
toward as they deliver services and populate service inventories. The
organization benefits from increased responsiveness after a significant
amount of these services is in place. The processes required to model
and design services require more up-front cost and effort than building
the corresponding quantity of solution logic using traditional project deliv-
ery approaches.

It is therefore important to acknowledge that service-orientation has a
strategic focus that intends to establish a highly agile enterprise. This is
different from agile development approaches that have more of a tactical
focus due to an emphasis on delivering solution logic more rapidly. From a
delivery perspective, service-orientation does not tend to increase agility.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 63

Reduced IT Burden

Consistently applying service-orientation results in an IT enterprise with reduced waste
and redundancy, reduced size and operational cost (Figure 3.33), and reduced overhead
associated with its governance and evolution. Such an enterprise can benefit an organi-
zation through dramatic increases in efficiency and cost-effectiveness.

In essence, the attainment of the previously described goals can create a leaner, more
agile IT department; one that is less of a burden on the organization and more of an
enabling contributor to its strategic goals.

64 Chapter 3: Service-Oriented Computing and SOA

Figure 3.32
Another example of a formula used in SOA projects. This time, the delivery timeline is projected based
on the percentage of “net new” solution logic that needs to be built. Though in this example only 35%
of new logic is required, the timeline is reduced by around 50% because additional effort is still
required to incorporate existing, reusable services from the inventory.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 64

3.3 Goals and Benefits of Service-Oriented Computing 65

SUMMARY OF KEY POINTS

• Key benefits of service-oriented computing are associated with the standardi-
zation, consistency, reliability, and scalability established within services
through the application of service-orientation design principles.

• The service-oriented computing platform provides the potential to elevate the
responsiveness and cost-effectiveness of IT through a design paradigm that
emphasizes the realization of strategic goals and benefits.

Figure 3.33
If you were to take a typical automated enterprise and redevelop it entirely with
custom, normalized services, its overall size would shrink considerably, result-
ing in a reduced operational scope.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 65

66 Chapter 3: Service-Oriented Computing and SOA

3.4 CASE STUDY BACKGROUND

The Cutit ownership team has nowhere near the resources or in-house expertise to
plan a transition toward an SOA-based automation environment. They therefore
engage a local consulting firm to take charge of the planning and analysis effort.
The goal is to complete this project within a month and then use the resulting
reports to decide on a delivery strategy.

The consultants spend the next few weeks invading Cutit’s environments to doc-
ument technology and business requirements. They look at service encapsulation
options for legacy systems and service-based middleware platforms as part of a
marketplace survey but also perform some analysis around the creation of custom
services to replace the outdated automation hub.

As part of the final analysis, a preliminary service-oriented architecture is concep-
tualized and supplemented with a list of Web service-centric technology compo-
nents required to establish it. Cutit reviews the reports and takes the consultants’

recommendations into consideration. The report emphasizes the pursuit of reuse,

but Cutit is more interested in leveraging service-oriented computing to establish
unity across its modest enterprise and to achieve a state where solution logic can
be more easily extended in response to unpredictable business demands.

Regardless, Cutit decides to proceed to the next step. Before moving ahead and
building actual services, they invest in the creation of a service inventory blue-
print. Cutit cannot afford to wait more than three weeks before entering the devel-
opment stage, so this model will need to be high-level and therefore somewhat
incomplete.

04_0132344823_03.qxd 6/13/07 4:43 PM Page 66

Thomas Erl is the world’s top-selling SOA author, the Series Editor of the Prentice Hall
Service-Oriented Computing Series from Thomas Erl, and Editor of The SOA Magazine.

With over 65,000 copies in print, his first two books, Service-Oriented Architecture: A Field
Guide to Integrating XML and Web Services and Service-Oriented Architecture: Concepts,

Technology, and Design have become international bestsellers and have been translated
into several languages. Books by Thomas Erl have been formally reviewed and
endorsed by senior members of major software organizations, including IBM, Sun,

Microsoft, Oracle, BEA, HP, SAP, Google, and Intel.

Thomas is also the founder of SOA Systems Inc. (www.soasystems.com), a company
specializing in SOA training and strategic consulting services with a vendor-agnostic
focus. Through his work with standards organizations and independent research
efforts, Thomas has made significant contributions to the SOA industry, most notably in
the areas of service-orientation and SOA methodology.

Thomas is a speaker and instructor for private and public events, and has delivered
many workshops and keynote speeches. For a current list of his workshops, seminars,

and courses, see www.soatraining.com.

Papers and articles written by Thomas have been published in numerous industry trade
magazines and Web sites, and he has delivered Webcasts and interviews for many pub-
lications, including the Wall Street Journal.

For more information, visit www.thomaserl.com.

About the Author

25_0132344823_AbAu.qxd 6/14/07 11:55 AM Page 535

Several additional series titles are currently in development and will be released soon.
For more information about any of the books in this series, visit www.soabooks.com.

Service-Oriented Architecture:

A Field Guide to Integrating XML and Web Services

ISBN 0131428985

This top-selling field guide offers expert advice for incorporat-

ing XML and Web services technologies within service-oriented

integration architectures.

Service-Oriented Architecture:

Concepts, Technology, and Design

ISBN 0131858580

Widely regarded as the definitive “how-to” guide for SOA, this

best-selling book presents a comprehensive end-to-end tutorial

that provides step-by-step instructions for modeling and

designing service-oriented solutions from the ground up.

SOA: Principles of Service Design

ISBN 0132344823

Published with over 240 color illustrations, this hands-on guide

contains practical, comprehensive, and in-depth coverage of

service engineering techniques and the service-orientation

design paradigm. Proven design principles are documented to

help maximize the strategic benefit potential of SOA.

SOA: Design Patterns

ISBN 0136135161

Software design patterns have emerged as a powerful means

of avoiding and overcoming common design problems and

challenges. This new book presents a formal catalog of design

patterns specifically for SOA and service-orientation. All

patterns are documented using full-color illustrations and

further supplemented with case study examples.

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERLTHE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

27_0132344823_Index.qxd 6/14/07 1:17 PM Page 576

