
Service-Oriented
A rch itectu re

C o ncep ts , T ech no lo g y , a nd D es ig n

T h o m a s E rl

P R E N T IC E H A L L P R OF E SSION A L T E C H N IC A L R E F E R E N C E

U P P E R SA D D L E R IV E R , N J • B OST ON • IN D IA N A P OL IS • SA N F R A N C ISC O

N E W Y OR K • T OR ON T O • M ON T R E A L • L ON D ON • M U N IC H • P A R IS • M A D R ID

C A P E T OW N • SY D N E Y • T OK Y O • SIN G A P OR E • M E X IC O C IT Y

Erl_FM.qxd 6/30/05 10:53 AM Page v

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Many of the designations used by manufacturers and sellers to distinguish their
p roducts are claimed as trademark s. W here those designations ap p ear in this book , and
the p ublisher w as aw are of a trademark claim, the designations hav e been p rinted w ith
initial cap ital letters or in all cap itals.

T he authors and p ublisher hav e tak en care in the p rep aration of this book , but mak e no
ex p ressed or imp lied w arranty of any k ind and assume no resp onsibility for errors or
omissions. N o liability is assumed for incidental or conseq uential damages in connec-
tion w ith or arising out of the use of the information or p rograms contained herein.

T he p ublisher offers ex cellent discounts on this book w hen ordered in q uantity for bulk
p urchases or sp ecial sales, w hich may include electronic v ersions and/ or custom cov -
ers and content p articular to your business, training goals, mark eting focus, and brand-
ing interests. F or more information, p lease contact:

U . S . C orp orate and G ov ernment S ales
(8 0 0) 3 8 2 - 3 4 1 9
corpsales@pearsontechgroup.com

F or sales outside the U . S ., p lease contact:

I nternational S ales
international@pearsoned.com

V isit us on the W eb: www.phptr.com

L ibrary of C ongress N umber: 2 0 0 5 9 2 5 0 1 9

C op yright © 2 0 0 5 P earson E ducation, I nc. P ortions of this w ork are cop yright S O A
S ystems I nc., and rep rinted w ith p ermission from S O A S ystems I nc. © 2 0 0 5 . F ront cov er
and all p hotograp hs by T homas E rl. P ermission to use p hotograp hs granted by S O A
S ystems I nc.

A ll rights reserv ed. P rinted in the U nited S tates of A merica. T his p ublication is
p rotected by cop yright, and p ermission must be obtained from the cop yright holder
p rior to any p rohibited rep roduction, storage in a retriev al system, or transmission in
any form or by any means, electronic, mechanical, p hotocop ying, recording, or lik ew ise.
F or information regarding p ermissions, w rite to:

P earson E ducation, I nc.
R ights and C ontracts D ep artment
O ne L ak e S treet
U p p er S addle R iv er, N J 0 7 4 5 8

I S B N 0 - 1 3 - 1 8 5 8 5 8 - 0
T ex t p rinted in the U nited S tates on recycled p ap er at R .R . D onnelley in
C raw fordsv ille, I ndiana.
F irst p rinting, J uly 2 0 0 5

Erl_FM.qxd 6/30/05 10:53 AM Page vi

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Preface xxvii

C h ap ter 1

In tro d u ctio n 1

1 .1 W h y th is b o o k is im p o rtan t . 2

1 .1 .1 T h e fals e S O A . 2

1 .1 .2 T h e id eal S O A . 3

1 .1 .3 T h e real S O A . 4

1 .2 O b jectiv es o f th is b o o k . 4

1 .2 .1 U n d ers tan d in g S O A , s erv ice-o rien tatio n , an d W eb s erv ices 5

1 .2 .2 L earn in g h o w to b u ild S O A w ith W eb s erv ices 5

1 .3 W h o th is b o o k is fo r . 6

1 .4 W h at th is b o o k d o es n o t co v er . 6

1 .5 H o w th is b o o k is o rg an iz ed . 7

1 .5 .1 Part I: S O A an d W eb S erv ices F u n d am en tals 8

1 .5 .2 Part II: S O A an d W S -* E x ten s io n s . 10

1 .5 .3 Part III: S O A an d S erv ice-O rien tatio n . 13

1 .5 .4 Part IV : B u ild in g S O A (Plan n in g an d A n aly s is) 14

1 .5 .5 Part V : B u ild in g S O A (T ech n o lo g y an d D es ig n) 16

1 .5 .6 C o n v en tio n s . 19

1 .6 A d d itio n al in fo rm atio n . 19

1 .6 .1 T h e X M L & W eb S erv ices In teg ratio n F ram ew o rk (X W IF) 19

1 .6 .2 w w w .s erv iceo rien ted .w s . 20

1 .6 .3 C o n tact th e A u th o r . 20

Contents

Erl_FM.qxd 6/30/05 10:53 AM Page ix

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

x Contents

Chapter 2

Case Studies 21

2.1 How case studies are used . 22

2.1.1 Style characteristics . 22

2.1.2 R elationship to abstract content . 22

2.1.3 Code samples . 23

2.2 Case # 1 background: R ailCo Ltd. 23

2.2.1 History . 23

2.2.2 Technical infrastructure . 23

2.2.3 Automation solutions . 24

2.2.4 Business goals and obstacles . 24

2.3 Case # 2 background: Transit Line Systems Inc. 25

2.3.1 History . 26

2.3.2 Technical infrastructure . 26

2.3.3 Automation solutions . 27

2.3.4 Business goals and obstacles . 27

Part I

SOA and Web Services Fundamentals 29

Chapter 3

Introducing SOA 31

3.1 Fundamental SOA . 32

3.1.1 A service-oriented analogy . 32

3.1.2 How services encapsulate logic . 33

3.1.3 How services relate . 35

3.1.4 How services communicate . 35

3.1.5 How services are designed . 36

3.1.6 How services are built . 37

3.1.7 Primitive SOA . 38

3.2 Common characteristics of contemporary SOA 40

3.2.1 Contemporary SOA is at the core of the service-oriented

computing platform . 41

3.2.2 Contemporary SOA increases q uality of service 42

Erl_FM.qxd 6/30/05 10:53 AM Page x

For more information visit www.serviceoriented.ws.

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl

Contents xi

3.2.3 Contemporary SOA is fundamentally autonomous 42

3.2.4 Contemporary SOA is based on open standards 43

3.2.5 Contemporary SOA supports vendor diversity 43

3.2.6 Contemporary SOA promotes discovery . 44

3.2.7 Contemporary SOA fosters intrinsic interoperability 45

3.2.8 Contemporary SOA promotes federation 45

3.2.9 Contemporary SOA promotes architectural composability 46

3.2.10 Contemporary SOA fosters inherent reusability 47

3.2.11 Contemporary SOA emphasizes extensibility 48

3.2.12 Contemporary SOA supports a service-oriented

business modeling paradigm . 48

3.2.13 Contemporary SOA implements layers of abstraction 49

3.2.14 Contemporary SOA promotes loose coupling throughout the

enterprise . 50

3.2.15 Contemporary SOA promotes organizational agility 51

3.2.16 Contemporary SOA is a building block . 52

3.2.17 Contemporary SOA is an evolution . 53

3.2.18 Contemporary SOA is still maturing . 53

3.2.19 Contemporary SOA is an achievable ideal 53

3.2.20 Defining SOA . 54

3.2.21 Separating concrete characteristics . 55

3.3 Common misperceptions about SOA . 56

3.3.1 “An application that uses Web services is service-oriented.” 56

3.3.2 “SOA is just a marketing term used to re-brand Web services.” . . 57

3.3.3 “SOA is just a marketing term used to re-brand distributed

computing with Web services.” . 57

3.3.4 “SOA simplifies distributed computing.” . 57

3.3.5 “An application with Web services that uses WS-*

extensions is service-oriented.” . 58

3.3.6 “If you understand Web services you won’t have a

problem building SOA.” . 58

3.3.7 “Once you go SOA, everything becomes interoperable.” 59

3.4 Common tangible benefits of SOA . 59

3.4.1 Improved integration (and intrinsic interoperability) 60

3.4.2 Inherent reuse . 60

3.4.3 Streamlined architectures and solutions . 61

3.4.4 Leveraging the legacy investment . 61

3.4.5 Establishing standardized XML data representation 62

Erl_FM.qxd 6/30/05 10:53 AM Page xi

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

3.4.6 Focused investment on communications infrastructure 63

3.4.7 “Best-of-breed” alternatives . 63

3.4.8 Organizational agility . 63

3.5 Common pitfalls of adopting SOA . 64

3.5.1 Building service-oriented architectures like traditional

distributed architectures . 65

3.5.2 N ot standardizing SOA . 65

3.5.3 N ot creating a transition plan . 66

3.5.4 N ot starting with an XML foundation architecture 67

3.5.5 N ot understanding SOA performance requirements 67

3.5.6 N ot understanding Web services security 68

3.5.7 N ot keeping in touch with product platforms and standards

development . 69

Chapter 4

The Evolution of SOA 71

4.1 An SOA timeline (from XML to Web services to SOA) 72

4.1.1 XML: a brief history . 72

4.1.2 Web services: a brief history . 73

4.1.3 SOA: a brief history . 74

4.1.4 How SOA is re-shaping XML and Web services 76

4.2 The continuing evolution of SOA (standards organizations
and contributing vendors) . 78

4.2.1 “Standards” vs. “Specifications” vs. “Extensions” 78

4.2.2 Standards organizations that contribute to SOA 79

4.2.3 Major vendors that contribute to SOA . 82

4.3 The roots of SOA (comparing SOA to past architectures) 86

4.3.1 What is architecture? . 86

4.3.2 SOA vs. client-server architecture . 88

4.3.3 SOA vs. distributed Internet architecture . 95

4.3.4 SOA vs. hybrid Web service architecture 104

4.3.5 Service-orientation and object-orientation (Part I) 107

xii Contents

Erl_FM.qxd 6/30/05 10:53 AM Page xii

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Contents xiii

Chapter 5

Web Services and Primitive SOA 109

5.1 The Web services framework . 111

5.2 Services (as Web services) . 112

5.2.1 Service roles . 114

5.2.2 Service models . 126

5.3 Service descriptions (with WSDL) . 131

5.3.1 Service endpoints and service descriptions 133

5.3.2 Abstract description . 134

5.3.3 Concrete description . 135

5.3.4 Metadata and service contracts . 136

5.3.5 Semantic descriptions . 137

5.3.6 Service description advertisement and discovery 138

5.4 Messaging (with SOAP) . 142

5.4.1 Messages . 143

5.4.2 Nodes . 149

5.4.3 Message paths . 152

Part II

SOA and WS-* Extensions 155

What is “WS-*”? . 157

Chapter 6

Web Services and Contemporary SOA
(Part I: Activity Management and Composition) 159

6.1 Message exchange patterns . 162

6.1.1 Primitive MEPs . 163

6.1.2 MEPs and SOAP . 169

6.1.3 MEPs and WSDL . 169

6.1.4 MEPs and SOA . 171

6.2 Service activity . 172

6.2.1 Primitive and complex service activities 174

6.2.2 Service activities and SOA . 175

Erl_FM.qxd 6/30/05 10:53 AM Page xiii

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

6.3 Coordination . 177

6.3.1 Coordinator composition . 179

6.3.2 Coordination types and coordination protocols 180

6.3.3 Coordination contexts and coordination participants 180

6.3.5 The activation and registration process . 181

6.3.5 The completion process . 182

6.3.6 Coordination and SOA . 183

6.4 Atomic transactions . 186

6.4.1 ACID transactions . 187

6.4.2 Atomic transaction protocols . 188

6.4.3 The atomic transaction coordinator . 188

6.4.4 The atomic transaction process . 189

6.4.5 Atomic transactions and SOA . 191

6.5 Business activities . 193

6.5.1 Business activity protocols . 194

6.5.2 The business activity coordinator . 195

6.5.3 Business activity states . 195

6.5.4 Business activities and atomic transactions 196

6.5.5 Business activities and SOA . 197

6.6 Orchestration . 200

6.6.1 Business protocols and process definition 203

6.6.2 Process services and partner services . 203

6.6.3 Basic activities and structured activities 204

6.6.4 Sequences, flows, and links . 204

6.6.5 Orchestrations and activities . 205

6.6.6 Orchestration and coordination . 205

6.6.7 Orchestration and SOA . 205

6.7 Choreography . 208

6.7.1 Collaboration . 209

6.7.2 Roles and participants . 210

6.7.3 Relationships and channels . 210

6.7.4 Interactions and work units . 210

6.7.5 Reusability, composability, and modularity 210

6.7.6 Orchestrations and choreographies . 211

6.7.7 Choreography and SOA . 212

xiv Contents

Erl_FM.qxd 6/30/05 10:53 AM Page xiv

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Contents xv

Chapter 7

Web Services and Contemporary SOA
(Part II: Advanced Messaging, Metadata, and Security) 217

7.1 Addressing . 220

7.1.1 Endpoint references . 222

7.1.2 Message information headers . 223

7.1.3 Addressing and transport protocol independence 225

7.1.4 Addressing and SOA . 225

7.2 Reliable messaging . 228

7.2.1 RM Source, RM Destination, Application Source,

and Application Destination . 230

7.2.2 Sequences . 230

7.2.3 Acknowledgements . 231

7.2.4 Delivery assurances . 233

7.2.5 Reliable messaging and addressing . 235

7.2.6 Reliable messaging and SOA . 235

7.3 Correlation . 238

7.3.1 Correlation in abstract . 239

7.3.2 Correlation in MEPs and activities . 239

7.3.3 Correlation in coordination . 240

7.3.4 Correlation in orchestration . 240

7.3.5 Correlation in addressing . 240

7.3.6 Correlation in reliable messaging . 240

7.3.7 Correlation and SOA . 241

7.4 Policies . 242

7.4.1 The WS-Policy framework . 243

7.4.2 Policy assertions and policy alternatives 244

7.4.3 Policy assertion types and policy vocabularies 245

7.4.4 Policy subjects and policy scopes . 245

7.4.5 Policy expressions and policy attachments 245

7.4.6 What you really need to know . 245

7.4.7 Policies in coordination . 246

7.4.8 Policies in orchestration and choreography 246

7.4.9 Policies in reliable messaging . 246

7.4.10 Policies and SOA . 246

Erl_FM.qxd 6/30/05 10:53 AM Page xv

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

7.5 Metadata exchange . 248

7.5.1 The WS-MetadataExchange specification 249

7.5.2 G et Metadata request and response messages 250

7.5.3 G et request and response messages . 251

7.5.4 Selective retrieval of metadata . 252

7.5.5 Metadata exchange and service description discovery 252

7.5.6 Metadata exchange and version control 253

7.5.7 Metadata exchange and SOA . 254

7.6 Security . 257

7.6.1 Identification, authentication, and authorization 259

7.6.2 Single sign-on . 260

7.6.3 Confidentiality and integrity . 261

7.6.4 Transport-level security and message-level security 262

7.6.5 Encryption and digital signatures . 263

7.6.6 Security and SOA . 265

7.7 Notification and eventing . 266

7.7.1 Publish-and-subscribe in abstract . 267

7.7.2 One concept, two specifications . 268

7.7.3 The WS-Notification Framework . 268

7.7.4 The WS-Eventing specification . 271

7.7.5 WS-Notification and WS-Eventing . 274

7.7.6 Notification, eventing, and SOA . 274

Part III

SOA and Service-Orientation 277

Chapter 8

Principles of Service-Orientation 279

8.1 Service-orientation and the enterprise . 280

8.2 Anatomy of a service-oriented architecture 284

8.2.1 Logical components of the Web services framework 284

8.2.2 Logical components of automation logic 285

8.2.3 Components of an SOA . 288

8.2.4 How components in an SOA inter-relate 289

xvi Contents

Erl_FM.qxd 6/30/05 10:53 AM Page xvi

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Contents xvii

8.3 Common principles of service-orientation 290

8.3.1 Services are reusable . 292

8.3.2 Services share a formal contract . 295

8.3.3 Services are loosely coupled . 297

8.3.4 Services abstract underlying logic . 298

8.3.5 Services are composable . 301

8.3.6 Services are autonomous . 303

8.3.7 Services are stateless . 307

8.3.8 Services are discoverable . 309

8.4 How service-orientation principles inter-relate 311

8.4.1 Service reusability . 312

8.4.2 Service contract . 313

8.4.3 Service loose coupling . 315

8.4.4 Service abstraction . 316

8.4.5 Service composability . 317

8.4.6 Service autonomy . 318

8.4.7 Service statelessness . 319

8.4.8 Service discoverability . 320

8.5 Service-orientation and object-orientation (Part II) 321

8.6 Native Web service support for service-orientation principles . . 324

Chapter 9

Service Layers 327

9.1 Service-orientation and contemporary SOA 328

9.1.1 Mapping the origins and supporting sources of concrete

SOA characteristics . 329

9.1.2 Unsupported SOA characteristics . 332

9.2 Service layer abstraction . 333

9.2.1 Problems solved by layering services . 334

9.3 Application service layer . 337

9.4 Business service layer . 341

9.5 Orchestration service layer . 344

9.6 Agnostic services . 346

9.7 Service layer configuration scenarios . 347

9.7.1 Scenario #1: Hybrid application services only 348

9.7.2 Scenario #2: Hybrid and utility application services 349

Erl_FM.qxd 6/30/05 10:53 AM Page xvii

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

9.7.3 Scenario #3: Task-centric business services and utility

application services . 349

9.7.4 Scenario #4: Task-centric business services, entity-centric

business services, and utility application services 350

9.7.5 Scenario #5: Process services, hybrid application services,

and utility application services . 350

9.7.6 Scenario #6: Process services, task-centric business

services, and utility application services 351

9.7.7 Scenario #7: Process services, task-centric business

services, entity-centric business services, and utility

application services . 352

9.7.8 Scenario #8: Process services, entity-centric business

services, and utility application services 352

Part IV

Building SOA (Planning and Analysis) 355

Chapter 10

SOA Delivery Strategies 357

10.1 SOA delivery lifecycle phases . 358

10.1.1 Basic phases of the SOA delivery lifecycle 358

10.1.2 Service-oriented analysis . 359

10.1.3 Service-oriented design . 359

10.1.4 Service development . 360

10.1.5 Service testing . 360

10.1.6 Service deployment . 361

10.1.7 Service administration . 361

10.1.8 SOA delivery strategies . 362

10.2 The top-down strategy . 363

10.2.1 Process . 363

10.2.2 Pros and cons . 365

10.3 The bottom-up strategy . 366

10.3.1 Process . 367

10.3.2 Pros and cons . 368

10.4 The agile strategy . 370

10.4.1 Process . 370

10.4.2 Pros and cons . 373

xviii Contents

Erl_FM.qxd 6/30/05 10:53 AM Page xviii

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Contents xix

Chapter 11

Service-Oriented Analysis (Part I: Introduction) 375

11.1 Introduction to service-oriented analysis 377

11.1.1 Objectives of service-oriented analysis . 377

11.1.2 The service-oriented analysis process . 377

11.2 Benefits of a business-centric SOA . 382

11.2.1 Business services build agility into business models 383

11.2.2 Business services prepare a process for orchestration 384

11.2.3 Business services enable reuse . 384

11.2.4 Only business services can realize the

service-oriented enterprise . 385

11.3 Deriving business services . 386

11.3.1 Sources from which business services can be derived 387

11.3.2 Types of derived business services . 392

11.3.3 Business services and orchestration . 395

Chapter 12

Service-Oriented Analysis (Part II: Service Modeling) 397

12.1 Service modeling (a step-by-step process) 398

12.1.1 “Services” versus “Service Candidates” 398

12.1.2 Process description . 399

12.2 Service modeling guidelines . 416

12.2.1 Take into account potential cross-process reusability

of logic being encapsulated (task-centric business

service candidates) . 416

12.2.2 Consider potential intra-process reusability of logic being

encapsulated

(task-centric business service candidates) 417

12.2.3 Factor in process-related dependencies (task-centric

business service candidates) . 417

12.2.4 Model for cross-application reuse (application

service candidates) . 418

12.2.5 Speculate on further decomposition requirements 418

12.2.6 Identify logical units of work with explicit boundaries 419

12.2.7 Prevent logic boundary creep . 419

12.2.8 Emulate process services when not using orchestration

(task-centric business service candidates) 420

Erl_FM.qxd 6/30/05 10:53 AM Page xix

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

12.2.9 Target a balanced model . 421

12.2.10 Classify service modeling logic . 422

12.2.11 Allocate appropriate modeling resources 422

12.2.12 Create and publish business service modeling standards 422

12.3 Classifying service model logic . 423

12.3.1 The SOE model . 424

12.3.2 The enterprise business model . 426

12.3.3 “Building Blocks” versus “Service Models” 426

12.3.4 Basic modeling building blocks . 426

12.4 Contrasting service modeling approaches (an example) 430

Part V

Building SOA (Technology and Design) 445

Chapter 13

Service-Oriented Design (Part I: Introduction) 447

13.1 Introduction to service-oriented design 448

13.1.1 Objectives of service-oriented design . 448

13.1.2 “Design standards” versus “Industry standards” 449

13.1.3 The service-oriented design process . 449

13.1.4 Prerequisites . 451

13.2 WSDL-related XML Schema language basics 453

13.2.1 The schema element . 454

13.2.2 The element element . 455

13.2.3 The complexType and simpleType elements 455

13.2.4 The import and include elements . 456

13.2.5 Other important elements . 456

13.3 WSDL language basics . 457

13.3.1 The definitions element . 458

13.3.2 The types element . 459

13.3.3 The message and part elements . 461

13.3.4 The portType, interface, and operation elements 462

13.3.5 The input and output elements (when used

with operation) . 462

xx Contents

Erl_FM.qxd 6/30/05 10:53 AM Page xx

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Contents xxi

13.3.6 The binding element . 463

13.3.7 The input and output elements (when used with binding) . 464

13.3.8 The service, port, and endpoint elements 465

13.3.9 The import element . 465

13.3.10 The documentation element . 466

13.4 SOAP language basics . 466

13.4.1 The Envelope element . 468

13.4.2 The Header element . 468

13.4.3 The Body element . 468

13.4.4 The Fault element . 470

13.5 Service interface design tools . 471

13.5.1 Auto-generation . 471

13.5.2 Design tools . 472

13.5.3 Hand coding . 473

Chapter 14

Service-Oriented Design (Part II: SOA Composition Guidelines) 475

14.1 Steps to composing SOA . 476

14.1.1 Step 1: Choose service layers . 478

14.1.2 Step 2: Position core standards . 478

14.1.3 Step 3: Choose SOA extensions . 478

14.2 Considerations for choosing service layers 478

14.3 Considerations for positioning core SOA standards 481

14.3.1 Industry standards and SOA . 481

14.3.2 XML and SOA . 482

14.3.3 The WS-I Basic Profile . 483

14.3.4 WSDL and SOA . 485

14.3.5 XML Schema and SOA . 485

14.3.6 SOAP and SOA . 486

14.3.7 Namespaces and SOA . 487

14.3.8 UDDI and SOA . 488

14.4 Considerations for choosing SOA extensions 490

14.4.1 Choosing SOA characteristics . 490

14.4.2 Choosing WS-* specifications . 491

14.4.3 WS-BPEL and SOA . 492

Erl_FM.qxd 6/30/05 10:53 AM Page xxi

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Chapter 15

Service-Oriented Design (Part III: Service Design) 495

15.1 Service design overview . 497

15.1.1 Design standards . 498

15.1.2 About the process descriptions . 498

15.1.3 Prerequisites . 499

15.2 Entity-centric business service design (a step-by-step
process) . 501

15.2.1 Process description . 502

15.3 Application service design (a step-by-step process) 522

15.3.1 Process description . 523

15.4 Task-centric business service design (a step-by-step
process) . 540

15.4.1 Process description . 540

15.5 Service design guidelines . 555

15.5.1 Apply naming standards . 555

15.5.2 Apply a suitable level of interface granularity 556

15.5.3 Design service operations to be inherently extensible 558

15.5.4 Identify known and potential service requestors 559

15.5.5 Consider using modular WSDL documents 559

15.5.6 Use namespaces carefully . 560

15.5.7 Use the SOAP document and literal attribute values 561

15.5.8 Use WS-I Profiles even if WS-I compliance isn’t required 563

15.5.9 Document services with metadata . 563

Chapter 16

Service-Oriented Design (Part IV: Business Process Design) 565

16.1 WS-BPEL language basics . 566

16.1.1 A brief history of BPEL4WS and WS-BPEL 567

16.1.2 Prerequisites . 568

16.1.3 The process element . 568

16.1.4 The partnerLinks and partnerLink elements 569

16.1.5 The partnerLinkType element . 570

16.1.6 The variables element . 571

16.1.7 The getVariableProperty and

getVariableData functions . 572

xxii Contents

Erl_FM.qxd 6/30/05 10:53 AM Page xxii

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Contents xxiii

16.1.8 The sequence element . 573

16.1.9 The invoke element . 574

16.1.10 The receive element . 575

16.1.11 The reply element . 576

16.1.12 The switch, case, and otherwise elements 577

16.1.13 The assign, copy, from, and to elements 577

16.1.14 faultHandlers, catch, and catchAll elements 578

16.1.15 Other WS-BPEL elements . 579

16.2 WS-Coordination overview . 581

16.2.1 The CoordinationContext element . 582

16.2.2 The Identifier and Expires elements 583

16.2.3 The CoordinationType element . 583

16.2.4 The RegistrationService element . 583

16.2.5 Designating the WS-BusinessActivity coordination type 584

16.2.6 Designating the WS-AtomicTransaction coordination type 584

16.3 Service-oriented business process design (a step-by-step
process) . 585

16.3.1 Process description . 586

Chapter 17

Fundamental WS-* Extensions 613

Y ou mustUnderstand this . 614

17.1 WS-Addressing language basics . 615

17.1.1 The EndpointReference element . 616

17.1.2 Message information header elements . 617

17.1.3 WS-Addressing reusability . 620

17.2 WS-ReliableMessaging language basics 622

17.2.1 The Sequence, MessageNumber, and

LastMessage elements . 623

17.2.2 The SequenceAcknowledgement and

AcknowledgementRange elements . 625

17.2.3 The Nack element . 626

17.2.4 The AckRequested element . 627

17.2.5 Other WS-ReliableMessaging elements 628

17.3 WS-Policy language basics . 629

17.3.1 The Policy element and common policy assertions 630

17.3.2 The ExactlyOne element . 631

Erl_FM.qxd 6/30/05 10:53 AM Page xxiii

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

17.3.3 The All element . 632

17.3.4 The Usage attribute . 633

17.3.5 The Preference attribute . 633

17.3.6 The PolicyReference element . 633

17.3.7 The PolicyURIs attribute . 634

17.3.8 The PolicyAttachment element . 635

17.3.9 Additional types of policy assertions . 635

17.4 WS-MetadataExchange language basics 636

17.4.1 The GetMetadata element . 637

17.4.2 The Dialect element . 638

17.4.3 The Identifier element . 639

17.4.4 The Metadata, MetadataSection, and

MetadataReference elements . 640

17.4.5 The Get message . 641

17.5 WS-Security language basics . 642

17.5.1 The Security element (WS-Security) . 644

17.5.2 The UsernameToken, Username, and Password elements

(WS-Security) . 644

17.5.3 The BinarySecurityToken element (WS-Security) 644

17.5.4 The SecurityTokenReference element (WS-Security) 644

17.5.5 Composing Security element contents (WS-Security) 645

17.5.6 The EncryptedData element (XML-Encryption) 646

17.5.7 The CipherData, CipherValue, and CipherReference

elements (XML-Encryption) . 647

17.5.8 XML-Signature elements . 648

Chapter 18

SOA Platforms 651

18.1 SOA platform basics . 652

18.1.1 Basic platform building blocks . 653

18.1.2 Common SOA platform layers . 654

18.1.3 Relationship between SOA layers and technologies 655

18.1.4 Fundamental service technology architecture 656

18.1.5 Vendor platforms . 667

18.2 SOA support in J 2EE . 668

18.2.1 Platform overview . 668

18.2.2 Primitive SOA support . 681

xxiv Contents

Erl_FM.qxd 6/30/05 10:53 AM Page xxiv

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Contents xxv

18.2.3 Support for service-orientation principles 682

18.2.4 Contemporary SOA support . 683

18.3 SOA support in .NET . 688

18.3.1 Platform overview . 688

18.3.2 Primitive SOA support . 697

18.3.3 Support for service-orientation principles 698

18.3.4 Contemporary SOA support . 700

18.4 Integration considerations . 703

Appendix A

Case Studies: Conclusion 707

A.1 RailCo Ltd. 708

A.2 Transit Line Systems Inc. 711

A.3 The Oasis Car Wash . 715

Appendix B

Service Models Reference 717

About the Author 721

About SOA Systems 723

About the Photographs 725

Index 727

Erl_FM.qxd 6/30/05 10:53 AM Page xxv

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Part III

SOA and Service-Orientation

C h ap ter 8 P rincip les of Service-Orientation

C h ap ter 9 Service L ay ers

Erl_P3.qxd 6/30/05 11:00 AM Page 277

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

So far the focus has been on the aspects of SOA as a whole. We have discussed the

num erous ex tensions available to SOA as well as its fundam ental concepts. We now turn

our attention to the underlying paradig m prim arily responsible for defining SOA and

disting uishing it as an architectural m odel.

T he principles and concepts covered in the nex t two chapters discuss the spectrum

of service-orientation in detail. T his establishes necessary theory that applies to the

rudim entary com ponents of prim itive SOA, but also provides concepts that can be prop-

ag ated and leverag ed throug hout service-oriented environm ents. F or ex am ple, topics

covered in these chapters form the basis for the service m odeling and desig n processes

provided in the subseq uent Building SOA parts of this book .

Erl_P3.qxd 6/30/05 11:00 AM Page 278

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Chapter 8

Principles of Service-Orientation

8.1 S erv i c e- o rien tati o n an d the en terpri s e

8.2 A n ato m y o f a s erv i c e- o rien ted arc hitec tu re

8.3 Co m m o n pri n c iples o f s erv i c e- o rien tati o n

8.4 H o w s erv i c e- o rien tati o n pri n c iples i n ter- relate

8.5 S erv i c e- o rien tati o n an d o b jec t- o rien tati o n

8.6 N ati v e W eb s erv i c e s u ppo rt f o r s erv i c e- o rien tati o n
pri n c iples

Erl_08.qxd 6/30/05 11:01 AM Page 279

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

B
efore we can begin building a service-oriented solution, we need to understand

wh at m ak es a service suitable for S O A . In oth er words, h ow can we build W eb

services th at are truly service-oriented?

The answer lies in service-orientation. This approach to modeling business automation

logic has resulted in a set of commonly accepted principles applied to each unit of logic

that constitutes a service within an SOA . It is through the application of these principles

that the primitive components of an SOA (services, descriptions, messages) are shaped

in support of service-orientation.

This chapter begins with a look at how service-orientation applies to the enterprise as a

whole and then discusses individual principles in-depth.

In P la in E n g lis h s e c tio n s

A knowledge of the principles of service-orientation is perhaps even more important

than concepts covered in past chapters. They are core to the design of services

regardless of w hat u nderlying technology is u sed to im plem ent them . Therefore,

ou r In Plain English sections retu rn to su pplem ent the descriptions of individu al

principles.

How case studies are used: As you might recall from the case study background

information p rov ided in C hap ter 2 , one of R ailC o’s business goals w as to

imp rov e their ex isting automation p rocesses by mov ing tow ard S O A.

In this chap ter w e ex amine the serv ices built so far as p art of R ailC o’s technical

env ironment and discuss how they comp ly to or div erge from indiv idual p rinci-

p les of serv ice-orientation. E x isting T L S serv ices that already p ossess serv ice-

orientation characteristics are used for comp arison p urp oses.

8.1 Service-orientation and the enterprise

T he collectiv e logic that defines and driv es an enterp rise is an ev er-ev olv ing entity con-

stantly changing in resp onse to ex ternal and internal influences. F rom an I T p ersp ectiv e,

this enterprise logic can be div ided into tw o imp ortant halv es: business logic and ap p li-

cation logic (F igure 8 .1) .

Erl_08.qxd 6/30/05 11:01 AM Page 280

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Service-orientation and the enterprise 281

Each exists in a world of its own, and each represents a necessary part of contemporary

organiz ation structure. B usiness logic is a documented implementation of the business

req uirements that originate from an enterprise’s business areas. B usiness logic is gener-

ally structured into processes that express these req uirements, along with any associated

constraints, dependencies, and outside influences.

Application logic is an automated implementation of business logic organiz ed into var-

ious technology solutions. Application logic expresses business process workflows

through purchased or custom-developed systems within the confines of an organiz a-

tion’s IT infrastructure, security constraints, technical capabilities, and vendor

dependencies.

Service-orientation applies to enterprise logic. It introduces new concepts that augment

the manner in which this logic is represented, viewed, modeled, and shared. W hile the

principles behind service-orientation exist in a vacuous realm of abstraction and theory,

they are a necessary counterpart to the real world environments that req uire their guid-

ance and structure.

The concepts introduced by service-orientation are realiz ed through the introduction

of services. Let’s have a look at where services are located within the overall structure

of an automated organiz ation. As Figure 8.2 illustrates, services establish a high form of

abstraction wedged between traditional business and application layers. W hen posi-

tioned here, services can encapsulate physical application logic as well as business

process logic.

F ig u re 8.1

The b usiness and application logic domains.

Erl_08.qxd 6/30/05 11:01 AM Page 281

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Services modularize the enterprise, forming standalone units of logic that exist within a

common connectivity layer. Services can be layered so that parent services can encapsu-

late child services. This allows for the service layer to consist of multiple layers of

abstraction (as explained later in Chapter 9).

282 Chapter 8: Principles of Service-Orientation

Figure 8.2

The service interface layer positioned between enterprise layers that promote applica-

tion and business logic.

In Figure 8.2 we display a fragmented application layer, where individual applications

are confined to the boundaries that represent their respective proprietary platform envi-

ronments. Though we show services as existing in a single, continuous layer, this only

illustrates the open connectivity that exists among service interfaces. Freed from pro-

prietary ties, services can communicate via open protocols.

On a physical level, services are developed and deployed in proprietary environments,

wherein they are individually responsible for the encapsulation of specific application

Erl_08.qxd 6/30/05 11:01 AM Page 282

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Service-orientation and the enterprise 283

logic. Figure 8.3 shows how individual services, represented as service interfaces within

the service interface layer, represent application logic originating from different

platforms.

Figure 8.3

The service interface layer abstracts connectivity from service deployment

environments.

SU M M A R Y O F K E Y P O IN T S

• E nterprise logic can be divided into two domains: business logic and application

logic. Service-oriented principles can be applied to both.

• The service interface layer positions services to represent business logic and

abstract application logic.

Erl_08.qxd 6/30/05 11:01 AM Page 283

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

8.2 Anatomy of a service-oriented architecture

Chapter 5 established the components of the basic (first-generation) Web services

framework. This framework can be applied to implement services in just about any

environment. For example, services can be appended to traditional distributed applica-

tions or used as wrappers to expose legacy system logic. H owever, neither of these envi-

ronments resembles a “ real” service-oriented architecture.

To best understand what constitutes a true SOA, we need to abstract the key compo-

nents of the Web services framework and study their relationships more closely. To

accomplish this, we begin by revisiting these familiar components and altering our per-

spective of them. First, we re-label them to reflect terminology more associated with

service-orientation. Then we position them into a logical view wherein we subsequently

re-examine our components within the context of SOA.

8.2.1 Logical components of the Web services framework

The communications framework established by Web services brings us the foundation

technology for what we’ve classified as contemporary SOA. Because we covered this

framework in Chapter 5, we will use it as a reference point for our discussion of service-

orientation.

Let’s first recap some Web services fundamentals within a logical modeling context. As

shown in Figure 8.4 , each Web service contains one or more operations. N ote that this

diagram introduces a new symbol to represent operations separately from the service.

284 Chapter 8: Principles of Service-Orientation

Figure 8.4

A Web service sporting two operations.

Erl_08.qxd 6/30/05 11:01 AM Page 284

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Anatomy of a service-oriented architecture 285

Each operation governs the processing of a specific function the Web service is capable

of performing. The processing consists of sending and receiving SOAP messages, as

shown in Figure 8.5.

Figure 8.5

An operation processing outgoing and incom-

ing SOAP messages.

By composing these parts, Web services form an activity through which they can collec-

tively automate a task (Figure 8.6).

Figure 8.6

A basic communications scenario between Web services.

8.2.2 Logical components of automation logic

The Web services framework provides us not only with a technology base for enabling

connectivity, it also establishes a modularized perspective of how automation logic, as a

whole, can be comprised of independent units. To illustrate the inherent modularity of

Web services, let’s abstract the following fundamental parts of the framework:

• SOAP messages

• Web service operations

• Web services

• activities

Erl_08.qxd 6/30/05 11:01 AM Page 285

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

The latter three items represent units of logic that perform work and communicate using

SOAP messages. To better illustrate this in a service-oriented perspective, let’s replace

these terms with new ones, as follows:

• messages

• operations

• services

• processes (and process instances)

Y ou’ll notice that these are quite similar to the terms we used before. The one exception

is the use of “process” instead of “activity.” In later chapters we actually use the word

“activity” in different contexts when modeling service-oriented business processes.

For now, the one discrepancy to be aware of is that while a Web service activity is typi-

cally used to represent the temporary interaction of a group of Web services, a process

is a static definition of interaction logic. An activity is best compared to an instance of a

process wherein a group of services follow a particular path through the process logic to

complete a task.

Regardless, for the purposes of our discussion of service-orientation, we’ll continue with

our look at how automation logic is comprised of the four identified parts. We can

further qualify these parts by relating each to different sized units of logic, as follows:

• messages = units of communication

• operations = units of work

• services = units of processing logic (collections of units of work)

• processes = units of automation logic (coordinated aggregation of units of work)

Figure 8.7 provides us with a primitive view of how operations and services represent

units of logic that can be assembled to comprise a unit of automation logic.

Next, in Figure 8.8, we establish that messages are a suitable means by which all units of

processing logic (services) communicate. This illustrates that regardless of the scope of

logic a service represents, no actual processing of that logic can be performed without

issuing units of communication (in this case, messages).

286 Chapter 8: Principles of Service-Orientation

Erl_08.qxd 6/30/05 11:01 AM Page 286

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Anatomy of a service-oriented architecture 287

The purpose of these views is simply to express that processes, services, and operations,

on the most fundamental level, provide a flexible means of partitioning and mod-

ularizing logic. Regardless of the technology platform used, this remains the most basic

concept that underlies service-orientation. In being able to derive this view from the

Web services framework, we also have demonstrated the suitability of the Web services

platform as a means of implementation for SOA.

Figure 8.7

A primitive view of how SOA modulariz es automation logic into units.

Figure 8.8

A primitive view of how units of communication enable interaction between units of logic.

Erl_08.qxd 6/30/05 11:01 AM Page 287

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

8.2.3 Components of an SOA

We’ll continue to work with our components of automation logic, but we now broaden

our discussion to how the characteristics and behaviors of these components are formed

within service-oriented architecture.

Each of the previously defined components establishes a level of enterprise logic

abstraction, as follows:

• A message represents the data required to complete some or all parts of a unit of

work.

• An operation represents the logic required to process messages in order to complete

a unit of work (Figure 8.9).

288 Chapter 8: Principles of Service-Orientation

Figure 8.9

The scope of an operation within a process.

• A service represents a logically grouped set of operations capable of performing

related units of work.

• A process contains the business rules that determine which service operations are

used to complete a unit of automation. In other words, a process represents a large

piece of work that requires the completion of smaller units of work (Figure 8.10).

Figure 8.10

Operations belonging to different services representing various

parts of process logic.

Erl_08.qxd 6/30/05 11:01 AM Page 288

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Anatomy of a service-oriented architecture 289

8.2.4 H ow components in an SOA inter-relate

Having established the core characteristics of our SOA components, let’s now look at

how these components are required to relate to each other:

• An operation sends and receives messages to perform work.

• An operation is therefore mostly defined by the messages it processes.

• A service groups a collection of related operations.

• A service is therefore mostly defined by the operations that comprise it.

• A process instance can compose services.

• A process instance is not necessarily defined by its services because it may only

require a subset of the functionality offered by the services.

• A process instance invokes a unique series of operations to complete its

automation.

• Every process instance is therefore partially defined by the service operations

it uses.

Figures 8.11 and 8.12 further illustrate these relationships.

A service-oriented architecture is an environment standardized according to the princi-

ples of service-orientation in which a process that uses services (a service-oriented

process) can execute. Next, we’ll take a closer look at what exactly the principles of serv-

ice-orientation consist of.

Figure 8.11

H ow the components of a service-oriented architecture relate.

Erl_08.qxd 6/30/05 11:01 AM Page 289

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

SUMMARY OF KEY POINTS

• The logical parts of an SOA can be mapped to corresponding components in the

basic Web services framework.

• B y viewing a service-oriented solution as a unit of automation logic, we establish

that SOA consists of a sophisticated environment that supports a highly modularized

separation of logic into differently scoped units.

• SOA further establishes specific characteristics, behaviors, and relationships among

these components that provide a predictable environment in support of service-

orientation.

8.3 C ommon principles of service-orientation

In Chapter 3 we established that there is no single definition of SOA. There is also no sin-

gle governing standards body that defines the principles behind service-orientation.

Instead, there are many opinions, originating from public IT organizations to vendors

and consulting firms, about what constitutes service-orientation.

Service-orientation is said to have its roots in a software engineering theory known as

“separation of concerns.” This theory is based on the notion that it is beneficial to break

down a large problem into a series of individual concerns. This allows the logic required

to solve the problem to be decomposed into a collection of smaller, related pieces. Each

piece of logic addresses a specific concern.

290 Chapter 8: Principles of Service-Orientation

Figure 8.12

How the components of a service-oriented architecture define

each other.

Erl_08.qxd 6/30/05 11:01 AM Page 290

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 291

This theory has been implemented in different ways with different development plat-

forms. Object-oriented programming and component-based programming approaches,

for example, achieve a separation of concerns through the use of objects, classes, and

components.

Service-orientation can be viewed as a distinct manner in which to realize a separation

of concerns. The principles of service-orientation provide a means of supporting this

theory while achieving a foundation paradigm upon which many contemporary SOA

characteristics can be built. In fact, if you study these characteristics again, you will

notice that several are (directly or indirectly) linked to the separation of concerns theory.

As previously mentioned, there is no official set of service-orientation principles. There

are, however, a common set of principles most associated with service-orientation.

These are listed below and described further in this section.

• Services are reusable— Regardless of whether immediate reuse opportunities exist,

services are designed to support potential reuse.

• Services sh are a f orm al con tract— For services to interact, they need not share any-

thing but a formal contract that describes each service and defines the terms of

information exchange.

• Services are loosely coup led— Services must be designed to interact without the

need for tight, cross-service dependencies.

• Services abstract un derly in g log ic— The only part of a service that is visible to the

outside world is what is exposed via the service contract. U nderlying logic, beyond

what is expressed in the descriptions that comprise the contract, is invisible and

irrelevant to service requestors.

• Services are com p osable— Services may compose other services. This allows logic

to be represented at different levels of granularity and promotes reusability and the

creation of abstraction layers.

• Services are auton om ous— The logic governed by a service resides within an

explicit boundary. The service has control within this boundary and is not depend-

ent on other services for it to execute its governance.

• Services are stateless— Services should not be required to manage state informa-

tion, as that can impede their ability to remain loosely coupled. Services should be

designed to maximize statelessness even if that means deferring state management

elsewhere.

Erl_08.qxd 6/30/05 11:01 AM Page 291

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

• Services are discoverable—Services should allow their descriptions to be discov-

ered and understood by humans and service requestors that may be able to make

use of their logic.

Of these eight, autonomy, loose coupling, abstraction, and the need for a formal contract

can be considered the core principles that form the baseline foundation for SOA. As

explained in the How service-orientation principles inter-relate section later in this chapter,

these four principles directly support the realization of other principles (as well as each

other).

There are other qualities commonly associated with services and service-orientation.

Examples include self-descriptive and coarse-grained interface design characteristics.

We classify these more as service design guidelines, and they are therefore discussed as

part of the design guidelines provided in Chapter 15.

292 Chapter 8: Principles of Service-Orientation

N OTE

Y ou may have noticed that the reusability and autonomy principles also were

mentioned as part of the contemporary SOA characteristics described in Chapter

3. This overlap is intentional, as we simply are identifying q ualities commonly

associated with SOA as a whole as well as services designed for use in SOA. We

further clarify the relationship between contemporary SOA characteristics and

service-orientation principles in Chapter 9 .

To fully understand how service-orientation principles shape service-oriented architec-

ture, we need to explore the implications their application will have on all of the primary

parts that comprise SOA. Let’s take a closer look at each of the principles.

8.3.1 Services are reusable

Service-orientation encourages reuse in all services, regardless if immediate require-

ments for reuse exist. By applying design standards that make each service potentially

reusable, the chances of being able to accommodate future requirements with less devel-

opment effort are increased. Inherently reusable services also reduce the need for creat-

ing wrapper services that expose a generic interface over top of less reusable services.

This principle facilitates all forms of reuse, including inter-application interoperability,

composition, and the creation of cross-cutting or utility services. As we established ear-

lier in this chapter, a service is simply a collection of related operations. It is therefore the

logic encapsulated by the individual operations that must be deemed reusable to war-

rant representation as a reusable service (Figure 8.13).

Erl_08.qxd 6/30/05 11:01 AM Page 292

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 293

Messaging also indirectly supports service reusability through the use of SOAP headers.

These allow for messages to become increasingly self-reliant by grouping metadata

details with message content into a single package (the SOAP envelope). Messages can

be equipped with processing instructions and business rules that allow them to dictate

to recipient services how they should be processed.

The processing-specific logic embedded in a message alleviates the need for a service to

contain this logic. More importantly, it imposes a requirement that service operations

become less activity-specific—in other words, more generic. The more generic a ser-

vice’s operations are, the more reusable the service.

Figure 8.13

A reusable service ex poses reusable operations.

CASE STUD Y

RailCo delivered the Invoice Submission Service for the sole purpose of being

able to connect to TLS’s new B2B system. This Web service’s primary function

therefore is to send electronic invoice documents to the TLS Accounts Payable

Service. The service contains the following two operations: SubmitInvoice and

G etTLSMetadata (Figure 8.14).

Erl_08.qxd 6/30/05 11:01 AM Page 293

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

294 Chapter 8: Principles of Service-Orientation

The SubmitInvoice operation simply initiates the transmission of the invoice doc-

ument. You might recall in the Metadata exchange section of Chapter 7 that an

operation was added to periodically check the TLS Accounts Payable Service for

changes to its service description. This new operation is GetTLSMetadata.

Figure 8.14

The R ailCo Invoice Submission Service and its

operations.

Because they were built to meet immediate and specific business requirements,

these operations have no real reuse potential. The SubmitInvoice operation is

designed to forward SOAP messages containing specific headers required by TLS

and containing an invoice X ML document structured according to a schema also

defined by TLS. By its very name, the GetTLSMetadata operation identifies

itself as existing for one reason: to query a specific endpoint for new metadata

information.

The TLS Accounts Payable Service, on the other hand, provides a series of

generic operations related to the processing of accounts payable transactions.

This service is therefore used by different TLS systems, one of which is the

aforementioned B2B solution.

In Chapters 11 and 12 we will submit the RailCo Invoice Submission Service to

a modeling exercise in an attempt to reshape it into a service that implements

actual service-orientation principles, including reusability.

Erl_08.qxd 6/30/05 11:01 AM Page 294

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 295

8.3.2 Services share a formal contract

Service contracts provide a formal definition of:

• the service endpoint

• each service operation

• every input and output message supported by each operation

• rules and characteristics of the service and its operations

Service contracts therefore define almost all of the primary parts of an SOA (Figure 8.15).

Good service contracts also may provide semantic information that explains how a serv-

ice may go about accomplishing a particular task. Either way, this information estab-

lishes the agreement made by a service provider and its service requestors.

Because this contract is shared among services, its design is extremely important. Ser-

vice requestors that agree to this contract can become dependent on its definition. There-

fore, contracts need to be carefully maintained and versioned after their initial release.

IN PL AIN ENG L ISH

One day, a government inspector stops by our car washing operation. Not knowing

who he is, I ask if he would like his car washed and waxed or just washed. He

responds by asking a question of his own. “D o you have a business license for this

operation? ”

A subsequent conversation between the inspector and our team results in the revela-

tion that we have indeed been operating without a business license. We are therefore

ordered to cease all work until we obtain one. We scramble to find out what needs to

be done. This leads us to visit the local Business License Office to start the process

of acquiring a license.

The Business License Office provides a distinct service: issuing and renewing busi-

ness licenses. It is not there to service just our car washing company; it is there to

provide this service to anyone requesting it. Because its service is designed to facili-

tate multiple service requestors, the logic that enables the service can be classified

as being reusable.

Erl_08.qxd 6/30/05 11:01 AM Page 295

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

As explained in Chapter 5, service description documents, such as the WSDL definition,

XSD schemas, and policies, can be viewed collectively as a communications contract that

expresses exactly how a service can be programmatically accessed.

296 Chapter 8: Principles of Service-Orientation

Figure 8.15

Service contracts formally define the service, operation,

and message components of a service-oriented

architecture.

CASE STUDY

From the onset, RailCo and TLS agreed to each other’s service contracts, which

enabled these two companies to interact via the TLS B2B system. The rules of the

contract and the definition of associated service description documents all are

provided by TLS to ensure a standardized level of conformance that applies to

each of its online vendors.

One day, RailCo is informed that TLS has revised the policy published with the

Accounts Payable Service. A new rule has been added where TLS is offering bet-

ter payment terms to vendors in exchange for larger discounts. RailCo has the

choice to continue pricing their products at the regular amounts and face a pay-

ment term of 60 days for their invoices or reduce their prices to get a payment

term of 30 days.

Both of these options are acceptable contract conditions published by TLS. After

some evaluation, RailCo decides not to take advantage of the reduced payment

terms and therefore does not adjust its product prices.

Erl_08.qxd 6/30/05 11:01 AM Page 296

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 297

8.3.3 Services are loosely coupled

No one can predict how an IT environment will evolve. How automation solutions

grow, integrate, or are replaced over time can never be accurately planned out because

the requirements that drive these changes are almost always external to the IT environ-

ment. Being able to ultimately respond to unforeseen changes in an efficient manner is

a key goal of applying service-orientation. Realizing this form of agility is directly sup-

ported by establishing a loosely coupled relationship between services (Figure 8.16).

Loose coupling is a condition wherein a service acquires knowledge of another service

while still remaining independent of that service. Loose coupling is achieved through

the use of service contracts that allow services to interact within predefined parameters.

It is interesting to note that within a loosely coupled architecture, service contracts actu-

ally tightly couple operations to services. When a service is formally described as being

the location of an operation, other services will depend on that operation-to-service

association.

IN PLAIN ENGLISH

F or us to get a business license, we must fill out an application form. This process

essentially formalizes our request in a format required and expected by the Business

License Office.

The completed application form is much like a contract between the service provider

and the requestor of the service. U pon accepting the form, the service provider

agrees to act on the request.

Figure 8.16

Services limit dependencies to the service contract, allowing underlying provider and

requestor logic to remain loosely coupled.

Erl_08.qxd 6/30/05 11:01 AM Page 297

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

8.3.4 Services abstract underlying logic

Also referred to as service interface-level abstraction, it is this principle that allows services

to act as black boxes, hiding their details from the outside world. The scope of logic rep-

resented by a service significantly influences the design of its operations and its position

within a process.

There is no limit to the amount of logic a service can represent. A service may be

designed to perform a simple task, or it may be positioned as a gateway to an entire

automation solution. There is also no restriction as to the source of application logic a

service can draw upon. For example, a single service can, technically, expose application

logic from two different systems (Figure 8.17).

298 Chapter 8: Principles of Service-Orientation

CASE STUDY

Through the use of service contracts, RailCo and TLS services are naturally

loosely coupled. However, one could say that the extent of loose coupling

between the two service provider entities is significantly different.

TLS services are designed to facilitate multiple B2B partners, as well as internal

reuse and composition requirements. This makes TLS services very loosely cou-

pled from any of its service requestors.

RailCo’s services, on the other hand, are designed specifically to interact with

designated TLS services that are part of the overall TLS B2B solution. No attempt

was made to make these services useful for any other service requestors. RailCo

services are therefore considered less loosely coupled than TLS services.

IN PLAIN ENGLISH

After we have submitted our form, we are not required to remain at the Business

License Office, nor do we need to stay in touch with them. We only need to wait until

the application is processed and a license is (hopefully) issued.

This is much like an asynchronous message exchange, but it is also a demonstration

of a loosely coupled relationship between services or between service provider and

requestor. All we need to interact with the Business License Office is an application

form that defines the information the office requires to process our request. Prior to

and subsequent to the submission of that request, our car washing team (service

requestor) and the Business License Office (service provider) remain independent

of each other.

Erl_08.qxd 6/30/05 11:01 AM Page 298

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 299

Operation granularity is therefore a primary design consideration that is directly related

to the range and nature of functionality being exposed by the service. Again, it is the

individual operations that collectively abstract the underlying logic. Services simply act

as containers for these operations.

Service interface-level abstraction is one of the inherent qualities provided by Web serv-

ices. The loosely coupled communications structure requires that the only piece of

knowledge services need to interact is each others’ service descriptions.

Figure 8.17

Service operations abstract the underlying details of the functionality they expose.

CASE STUDY

Because both RailCo and TLS employ Web services to communicate, each envi-

ronment successfully implements service interface-level abstraction. On RailCo’s

end, this abstraction hides the legacy systems involved with generating elec-

tronic invoice documents and processing incoming purchase orders. On the TLS

side, services hide service compositions wherein processing duties are delegated

to specialized services as part of single activities (Figure 8.18).

Erl_08.qxd 6/30/05 11:01 AM Page 299

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

300 Chapter 8: Principles of Service-Orientation

Figure 8.18

Neither of RailCo’s or TLS’s service requestors require any knowledge of what

lies behind the other’s service providers.

IN PLAIN ENGLISH

The tasks required for the Business License Office to process our request include:

• A name check to ensure that the name of our company “Oasis Car Wash” isn’t

already taken.

• A background check of the company principals to ensure that none of us have had

past bankruptcies.

• A verification of our sub-lease agreement to ensure that we are, in fact, allowed to

operate at the gas station we have been using.

Erl_08.qxd 6/30/05 11:01 AM Page 300

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 301

8.3.5 Services are composable

A service can represent any range of logic from any types of sources, including other

services. The main reason to implement this principle is to ensure that services are

designed so that they can participate as effective members of other service compositions

if ever required. This requirement is irrespective of whether the service itself composes

others to accomplish its work (Figure 8.19).

These and other tasks are performed completely unbeknownst to us. We don’t know

or necessarily care what the Business License Office needs to do to process our

application. We are just interested in the expected outcome: the issuance of our

license.

Figure 8.19

The UpdateEverything operation encapsulating a service composition.

A common SOA extension that underlines composability is the concept of orchestration.

Here, a service-oriented process (which essentially can be classified as a service compo-

sition) is controlled by a parent process service that composes process participants.

Erl_08.qxd 6/30/05 11:01 AM Page 301

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

The requirement for any service to be composable also places an emphasis on the design

of service operations. Composability is simply another form of reuse, and therefore

operations need to be designed in a standardized manner and with an appropriate level

of granularity to maximize composition opportunities.

302 Chapter 8: Principles of Service-Orientation

CASE STUDY

As with RailCo’s Invoice Submission Service, its Order Fulfillment Service was

created to meet a specific requirement in support of communication with TLS’s

B2B solution.

The Order Fulfillment Service contains just one public operation called

ProcessTLSPO (Figure 8.20). This operation is designed in compliance with TLS

vendor service specifications so that it is fully capable of receiving POs submitted

by the TLS Purchase Order Service. Part of this compliance requires the operation

to be able to process custom SOAP headers containing proprietary security

tokens.

Figure 8.20

The RailCo Order Fulfillment Service with its one

operation.

Though the Order Fulfillment Service is capable of acting as a composition mem-

ber, its potential for being useful to any future compositions is limited. Composi-

tion support is similar to reusability in that generic functionality exposed by

operations make a service more composable. This RailCo service provides one

operation that performs a very specialized function, customized to processing a

specific document from a specific source. It will likely not be a suitable composi-

tion member, but it can act as a controller service, composing other services to

complete its PO processing tasks.

The TLS Accounts Payable Service already establishes a well-defined composi-

tion, wherein it acts as a controller service that composes the V endor Profile and

Ledger Services (Figure 8.21). Because they each expose a complete set of generic

Erl_08.qxd 6/30/05 11:01 AM Page 302

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 303

operations, all three of these services are capable of participating in other compo-

sition configurations.

Figure 8.21

The TLS Accounts Payable Service composition.

IN PLAIN ENGLISH

G iven that the services provided by the Business License Office are distinct and

reusable, it can be asked to assist other government offices to participate in the

completion of other services. For example, the Business Relocation Office manages

all administrative paperwork for businesses that need to be moved when their loca-

tion is scheduled for demolition.

As part of its many tasks, this office takes care of revising the business license infor-

mation for the affected company. It does so by enlisting the Business License Office

and requesting that they issue a new business license for a particular organization.

By reusing the services offered by the Business License Office, the Business Reloca-

tion Office has effectively composed services, much like a controller service reuses

and composes other service providers.

8.3.6 Services are autonomous

Autonomy requires that the range of logic exposed by a service exist within an explicit

boundary. This allows the service to execute self-governance of all its processing. It also

eliminates dependencies on other services, which frees a service from ties that could

Erl_08.qxd 6/30/05 11:01 AM Page 303

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

inhibit its deployment and evolution (Figure 8.22). Service autonomy is a primary con-

sideration when deciding how application logic should be divided up into services and

which operations should be grouped together within a service context.

304 Chapter 8: Principles of Service-Orientation

Figure 8.22

Autonomous services have control over underlying resources.

Deferring the location of business rules is one way to strengthen autonomy and keep

services more generic. Processes generally assume this role by owning the business rules

that determine how the process is structured and, subsequently, how services are com-

posed to automate the process logic. This is another aspect of orchestration explored in

the Orchestration service layer section in Chapter 9.

Note that autonomy does not necessarily grant a service exclusive ownership of the

logic it encapsulates. It only guarantees that at the time of execution, the service has con-

trol over whatever logic it represents. We therefore can make a distinction between two

types of autonomy.

Erl_08.qxd 6/30/05 11:01 AM Page 304

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 305

• Service-level autonomy—Service boundaries are distinct from each other, but the serv-

ice may share underlying resources. For example, a wrapper service that encapsu-

lates a legacy environment that also is used independently from the service has

service-level autonomy. It governs the legacy system but also shares resources with

other legacy clients.

• P ure autonomy—The underlying logic is under complete control and ownership of

the service. This is typically the case when the underlying logic is built from the

ground up in support of the service.

CASE STUDY

Given the distinct tasks they perform, the following three RailCo services all are

autonomous:

• Invoice Submission Service

• Order Fulfillment Service

• TLS Subscription Service

Each represents a specific boundary of application logic that does not overlap

with the boundary of any other services.

Autonomy in RailCo’s services was achieved inadvertently. No conscious effort

was made to avoid application overlap, as the services were delivered to simply

meet specific connectivity requirements.

As shown in Figure 8.23, the Invoice Processing and Order Fulfillment Services

encapsulate legacy logic. The legacy accounting system also is used by clients

independently from the services, which makes this service-level autonomy. The

TLS Notification Service achieves pure autonomy, as it represents a set of custom

components created only in support of this service.

In environments where a larger number of services exist and new services are

built on a regular basis, it is more common to introduce dedicated modeling

processes so pure service autonomy is preserved among individual services.

At TLS, for example, services undergo a service-oriented analysis to guarantee

autonomy and avoid encapsulation overlap. (Service-oriented analysis is

explained in Chapters 11 and 12.)

Erl_08.qxd 6/30/05 11:01 AM Page 305

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

306 Chapter 8: Principles of Service-Orientation

Figure 8.23

RailCo’s services luckily encapsulate explicit portions of legacy and newly

added application logic.

Erl_08.qxd 6/30/05 11:01 AM Page 306

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 307

8.3.7 Services are stateless

Services should minimize the amount of state information they manage and the dura-

tion for which they hold it. State information is data-specific to a current activity. While

a service is processing a message, for example, it is temporarily stateful (Figure 8.24). If

a service is responsible for retaining state for longer periods of time, its ability to remain

available to other requestors will be impeded.

Statelessness is a preferred condition for services and one that promotes reusability and

scalability. For a service to retain as little state as possible, its individual operations need

to be designed with stateless processing considerations.

A primary quality of SOA that supports statelessness is the use of document-style mes-

sages. The more intelligence added to a message, the more independent and self-suffi-

cient it remains. Chapters 6 and 7 explore various WS-* extensions that rely on the use

of SOAP headers to carry different types of state data.

IN PLAIN ENGLISH

Let’s revisit the three tasks performed by the Business License Office when process-

ing an application for a new business license:

• name check

• background check

• location verification

The Business License Office owns the corporate name database required to perform

a name check. Also the office has personnel dedicated to visiting and verifying busi-

ness site locations. When completing these two tasks, the Business License Office

therefore has complete self-governance. However, when having to perform a back-

ground check, the office must share a database system with the Revenue Office.

When it gets access, it can retrieve an abbreviated credit history for each of the

company principals listed on the application.

The Business License Office’s reliance on the shared database reduces its independ-

ence somewhat. However, its overall ability to perform the tasks within its own bound-

ary give it a degree of autonomy.

Erl_08.qxd 6/30/05 11:01 AM Page 307

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

308 Chapter 8: Principles of Service-Orientation

Figure 8.24

Stateless and stateful stages a service passes through while

processing a message.

CASE STUDY

As with loose coupling, statelessness is a quality that can be measured in

degrees. The RailCo Order Fulfillment Service is required to perform extra run-

time parsing and processing of various standard SOAP header blocks to success-

fully receive a purchase order document submitted by the TLS Purchase Order

Service. This processing ties up the Order Fulfillment Service longer than, say,

the Invoice Submission Service, which simply forwards a predefined SOAP mes-

sage to the TLS Accounting Service.

Erl_08.qxd 6/30/05 11:01 AM Page 308

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Common principles of service-orientation 309

8.3.8 Services are discoverable

Discovery helps avoid the accidental creation of redundant services or services that

implement redundant logic. Because each operation provides a potentially reusable

piece of processing logic, metadata attached to a service needs to sufficiently describe

not only the service’s overall purpose, but also the functionality offered by its

operations.

Note that this service-orientation principle is related to but distinct from the contempo-

rary SOA characteristic of discoverability. On an SOA level, discoverability refers to the

architecture’s ability to provide a discovery mechanism, such as a service registry or

directory. This effectively becomes part of the IT infrastructure and can support numer-

ous implementations of SOA. On a service level, the principle of discoverability refers to

the design of an individual service so that it can be as discoverable as possible.

IN PLAIN ENGLISH

During the initial review of the application, our company was briefly discussed by per-

sonnel at the Business License Office. But after the application was fully processed,

no one really retained any memory of our request.

Though the details of our application have been logged and recorded in various

repositories, there is no further need for anyone involved in the processing of our

request to remember further information about it once the application processing task

was completed. To this extent, the Business License Office simulates a degree of

statelessness. It processes many requests every day, and there is no benefit to

retaining information about a completed request.

CASE STUDY

RailCo provides no means of discovery for its services, either internally or to the

outside world. Though outfitted with its own WSDL definition and fully capable

of acting as a service provider, the Invoice Submission Service is primarily uti-

lized as a service requestor and currently expects no communication outside of

the TLS Accounts Payable Service

Similarly, the RailCo Order Fulfillment Service was registered manually with the

TLS B2B solution so that it would be placed on the list of vendors that receive

purchase orders. This service provides no reusable functionality and is therefore

considered to have no immediate requirement for discovery.

Erl_08.qxd 6/30/05 11:01 AM Page 309

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

310 Chapter 8: Principles of Service-Orientation

Due to the reusable nature of TLS services and because of the volume of services

that are expected to exist in TLS technical environments, an internal service reg-

istry was established (as shown in Figure 8.25 and originally explained in Chap-

ter 5). This piece of TLS infrastructure promotes discoverability and prevents

accidental redundancy. It further leverages the existing design standards used by

TLS that promote the creation of descriptive metadata documents in support of

service discoverability.

Figure 8.25

RailCo’s services are not discoverable, but TLS’s inventory of services are stored in an internal

registry.

TLS is not interested in making its services publicly discoverable, which is why it

does not register them with a public service registry. Vendors that participate in

the TLS B2B system only are allowed to do so after a separate negotiation,

review, and registration process.

Erl_08.qxd 6/30/05 11:01 AM Page 310

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

How service-orientation principles inter-relate 311

SUMMARY OF KEY POINTS

• Different organizations have published their own versions of service-oriented

principles. As a result, many variations exist.

• The most common principles relate to loose coupling, autonomy, discoverability,

composability, reuse, service contracts, abstraction, and statelessness.

8.4 How service-orientation principles inter-relate

When reading through the previous descriptions, a number of questions might come to

mind, such as:

• What’s the difference between reusability and composability? (Aren’t you reusing a

service when you compose it?)

• What’s the difference between autonomy and statelessness? (Aren’t both a represen-

tation of service independence?)

• What’s the difference between loose coupling and the use of a service contract?

(Doesn’t a service contract automatically implement loose coupling?)

IN PLAIN ENGLISH

After some time, our business license is finally issued. Upon receiving the certificate

in the mail, we are back in business. Looking back at how this whole process began,

though, there is one step we did not discuss. When we first learned that we were

required to get a business license, we had to find out where the Business License

Office was located. This required us to search through the phone book and locate a

listing with contact information.

A service registry provides a discovery mechanism very much like a phone book,

allowing potential requestors to query and check candidate service providers. In the

same manner in which a registry points to service descriptions, the phone book list-

ing led us to the location at which we were able to obtain the original business license

application form.

M ore relevant to the principle of service discoverability is the fact that steps were

taken to make the Business License Office itself discoverable. Examples include

signs in the lobby of the high-rise in which the office is located, a sign on the office

entrance door, brochures located at other offices, and so on.

Erl_08.qxd 6/30/05 11:01 AM Page 311

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

To answer these and other questions, this section revisits our service-orientation princi-

ples to explore how each relates to, supports, or is affected by others. To accomplish this,

we abbreviate the original names we assigned each principle, as follows:

• Services are reusable = service reusability

• Services share a formal contract = service contract

• Services are loosely coupled = service loose coupling

• Services abstract underlying logic = service abstraction

• Services are composable = service composability

• Services are autonomous = service autonomy

• Services are stateless = service statelessness

• Services are discoverable = service discoverability

We intentionally prefix each principle with the word “service” to emphasize that the

principle applies to the design of a service only, as opposed to our SOA characteristics,

which apply to the design of SOA as a whole.

312 Chapter 8: Principles of Service-Orientation

NOTE

Each relationship is essentially described twice within these sections. This repeti-

tiveness is intentional, as this part of the chapter is provided more for reference

purposes. Feel free to skip ahead if you are not interested in learning about each

individual principle-to-principle relationship at this point.

8.4.1 Service reusability

When a service encapsulates logic that is useful to more than one service requestor, it can

be considered reusable. The concept of reuse is supported by a number of complemen-

tary service principles, as follows.

• Service autonomy establishes an execution environment that facilitates reuse

because the service has independence and self-governance. The less dependencies a

service has, the broader the applicability of its reusable functionality.

• Service statelessness supports reuse because it maximizes the availability of a serv-

ice and typically promotes a generic service design that defers activity-specific pro-

cessing outside of service logic boundaries.

Erl_08.qxd 6/30/05 11:01 AM Page 312

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

How service-orientation principles inter-relate 313

• Service abstraction fosters reuse because it establishes the black box concept, where

processing details are completely hidden from requestors. This allows a service to

simply express a generic public interface.

• Service discoverability promotes reuse, as it allows requestors (and those that build

requestors) to search for and discover reusable services.

• Service loose coupling establishes an inherent independence that frees a service

from immediate ties to others. This makes it a great deal easier to realize reuse.

Additionally, the principle of service reuse itself enables the following related principle:

• Service composability is primarily possible because of reuse. The ability for one

service to compose an activity around the utilization of a collection of services is

feasible when those services being composed are built for reuse. (It is technically

possible to build a service so that its sole purpose is to be composed by another, but

reuse is generally emphasized.)

Figure 8.26 provides a diagram showing how the principle of service reusability relates

to others.

Figure 8.26

Service reusability and its relationship with other service-orientation principles.

8.4.2 Service contract

A service contract is a representation of a service’s collective metadata. It standardizes

the expression of rules and conditions that need to be fulfilled by any requestor wanting

to interact with the service.

Erl_08.qxd 6/30/05 11:01 AM Page 313

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Service contracts represent a cornerstone principle in service-orientation and therefore

support other principles in various ways, as follows:

• Service abstraction is realized through a service contract, as it is the metadata

expressed in the contract that defines the only information made available to service

requestors. All additional design, processing, and implementation details are hid-

den behind this contract.

• Service loose coupling is made possible through the use of service contracts.

Processing logic from different services do not need to form tight dependencies;

they simply need an awareness of each other’s communication requirements, as

expressed by the service description documents that comprise the service contract.

• Service composability is indirectly enabled through the use of service contracts. It is

via the contract that a controller service enlists and uses services that act as compo-

sition members.

• Service discoverability is based on the use of service contracts. While some reg-

istries provide information supplemental to that expressed through the contract, it

is the service description documents that are primarily searched for in the service

discovery process.

The diagram in Figure 8.27 illustrates how the principle of service contract usage relates

to others.

314 Chapter 8: Principles of Service-Orientation

Figure 8.27

The service contract and its relationship with other service-orientation principles.

Erl_08.qxd 6/30/05 11:01 AM Page 314

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl

For more information visit www.serviceoriented.ws.

How service-orientation principles inter-relate 315

8.4.3 Service loose coupling

Loose coupling is a state that supports a level of independence between services (or

between service providers and requestors). As you may have already noticed, inde-

pendence or non-dependency is a fundamental aspect of services and SOA as a whole.

Therefore, the principle of persisting loose coupling across services supports the fol-

lowing other service-orientation principles:

• Service reusability is supported through loose coupling because services are freed

from tight dependencies on others. This increases their availability for reuse

opportunities.

• Service composability is fostered by the loose coupling of services, especially when

services are dynamically composed.

• Service statelessness is directly supported through the loosely coupled communica-

tions framework established by this principle.

• Service autonomy is made possible through this principle, as it is the nature of loose

coupling that minimizes cross-service dependencies.

Additionally, service loose coupling is directly implemented through the application of

a related service-orientation principle:

• Service contracts are what enable loose coupling between services, as the contract is

the only piece of information required for services to interact.

Figure 8.28 demonstrates these relationships.

Erl_08.qxd 6/30/05 11:01 AM Page 315

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

8.4.4 Service abstraction

Part of building solutions with independent services is allowing those services to encap-

sulate potentially complex processing logic and exposing that logic through a generic

and descriptive interface. This is the primary benefit of service abstraction, a principle

that is related to others, as explained here:

• Service contracts, in a manner, implement service abstraction by providing the offi-

cial description information that is made public to external service requestors.

• Service reusability is supported by abstraction, as long as what is being abstracted is

actually reusable.

These relationships are shown in Figure 8.29.

316 Chapter 8: Principles of Service-Orientation

Figure 8.28

Service loose coupling and its relationship with other service-orientation principles.

Erl_08.qxd 6/30/05 11:01 AM Page 316

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

How service-orientation principles inter-relate 317

8.4.5 Service composability

Designing services so that they support composition by others is fundamental to build-

ing service-oriented solutions. Service composability therefore is tied to service-orienta-

tion principles that support the concept of service composition, as follows:

• Service reusability is what enables one service to be composed by numerous others.

It is expected that reusable services can be incorporated within different composi-

tions or reused independently by other service requestors.

• Service loose coupling establishes a communications framework that supports the

concept of dynamic service composition. Because services are freed from many

dependencies, they are more available to be reused via composition.

• Service statelessness supports service composability, especially in larger composi-

tions. A service composition is reliant on the design quality and commonality of its

collective parts. If all services are stateless (by, for example, deferring activity-

specific logic to messages), the overall composition executes more harmoniously.

• Service autonomy held by composition members strengthens the overall composi-

tion, but the autonomy of the controller service itself actually is decreased due to

the dependencies on its composition members.

• Service contracts enable service composition by formalizing the runtime agreement

between composition members.

Figure 8.30 further illustrates these relationships.

Figure 8.29

Service abstraction and its relationship with other service-

orientation principles.

Erl_08.qxd 6/30/05 11:01 AM Page 317

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

8.4.6 Service autonomy

This principle applies to a service’s underlying logic. By providing an execution envi-

ronment over which a service has complete control, service autonomy relates to several

other principles, as explained here:

• Service reusability is more easily achieved when the service offering reusable logic

has self-governance over its own logic. Service Level Agreement (SLA) type require-

ments that come to the forefront for utility services with multiple requestors, such

as availability and scalability, are fulfilled more easily by an autonomous service.

• Service composability is also supported by service autonomy—for much of the

same reasons autonomy supports service reusability. A service composition consist-

ing of autonomous services is much more robust and collectively independent.

• Service statelessness is best implemented by a service that can execute independ-

ently. Autonomy indirectly supports service statelessness. (However, it is very easy

to create a stateful service that is also fully autonomous.)

• Service autonomy is a quality that is realized by leveraging the loosely coupled rela-

tionship between services. Therefore service loose coupling is a primary enabler of

this principle.

The diagram in Figure 8.31 shows how service autonomy relates to these other

principles.

318 Chapter 8: Principles of Service-Orientation

Figure 8.30

Service composability and its relationship with other service-orientation

principles.

Erl_08.qxd 6/30/05 11:01 AM Page 318

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

How service-orientation principles inter-relate 319

8.4.7 Service statelessness

To successfully design services not to manage state requires the availability of resources

surrounding the service to which state management responsibilities can be delegated.

However, the principle of statelessness is also indirectly supported by the following

service-orientation principles:

• Service autonomy provides the ability for a service to control its own execution

environment. By removing or reducing dependencies it becomes easier to build

statelessness into services, primarily because the service logic can be fully cus-

tomized to defer state management outside of the service logic boundary.

• Service loose coupling and the overall concept of loose coupling establishes a com-

munication paradigm that is fully realized through messaging. This, in turn, sup-

ports service statelessness, as state information can be carried and persisted by the

messages that pass through the services.

Service statelessness further supports the following principles:

• Service composability benefits from stateless composition members, as they reduce

dependencies and minimize the overhead of the composition as a whole.

Figure 8.31

Service autonomy and its relationship with other service-orientation principles.

Erl_08.qxd 6/30/05 11:01 AM Page 319

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

• Service reuse becomes more of a reality for stateless services, as availability of the

service to multiple requestors is increased and the absence of activity-specific logic

promotes a generic service design.

Figure 8.32 illustrates how service statelessness relates to the other service-orientation

principles.

320 Chapter 8: Principles of Service-Orientation

Figure 8.32

Service statelessness and its relationship with other service-orientation principles.

8.4.8 Service discoverability

Designing services so that they are naturally discoverable enables an environment

whereby service logic becomes accessible to new potential service requestors. This is

why service discoverability is tied closely to the following service-orientation principles:

• Service contracts are what service requestors (or those that create them) actually

discover and subsequently assess for suitability. Therefore, the extent of a service’s

discoverability can typically be associated with the quality or descriptiveness of its

service contract.

• Service reusability is what requestors are looking for when searching for services

and it is what makes a service potentially useful once it has been discovered. A

service that isn’t reusable would likely never need to be discovered because it

would probably have been built for a specific service requestor in the first place.

Erl_08.qxd 6/30/05 11:01 AM Page 320

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Service-orientation and object-orientation (Part II) 321

The diagram in Figure 8.33 shows how service discoverability fits in with the other

service-orientation principles.

Figure 8.33

Service discoverability and its relationship with other service-

orientation principles.

SUMMARY OF KEY POINTS

• Service-orientation principles are not realized in isolation; principles relate to and

support other principles in different ways.

• Principles, such as service reusability and service composability, benefit from the

support of other implemented principles.

• Principles, such as service loose coupling, service contract, and service autonomy,

provide significant support for the realization of other principles.

8.5 Service-orientation and ob ject-orientation (Part II)

Having now covered the fundamentals behind service-orientation principles, we can

continue the discussion we began in the Service-orientation and object-orientation (Part I)

section from Chapter 4.

Those of you familiar with object-oriented analysis and design probably will have rec-

ognized a similarity between a number of the service-orientation principles discussed

and the more established principles of object-orientation.

Indeed, service-orientation owes much of its existence to object-oriented concepts and

theory. Table 8.1 provides a look at which common object-orientation principles are

related to the service-orientation principles we’ve been discussing.

Erl_08.qxd 6/30/05 11:01 AM Page 321

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Table 8.1 An overview of how service-orientation principles relate to object-orientation

principles.

322 Chapter 8: Principles of Service-Orientation

Service-Orientation Related

Principle Object-Orientation Principles

service reusability Much of object-orientation is geared toward the creation
of reusable classes. The object-orientation principle of
modularity standardized decomposition as a means of
application design.

Related principles, such as abstraction and encapsula-
tion, further support reuse by requiring a distinct separa-
tion of interface and implementation logic. Service
reusability is therefore a continuation of this goal.

service contract The requirement for a service contract is very compara-
ble to the use of interfaces when building object-oriented
applications. Much like WSDL definitions, interfaces pro-
vide a means of abstracting the description of a class.
And, much like the “WSDL first” approach encouraged
within SOA, the “interface first” approach also is consid-
ered an object-orientation best practice.

service loose coupling Although the creation of interfaces somewhat decouples
a class from its consumers, coupling in general is one of
the primary qualities of service-orientation that deviates
from object-orientation.

The use of inheritance and other object-orientation prin-
ciples encourages a much more tightly coupled relation-
ship between units of processing logic when compared to
the service-oriented design approach.

service abstraction The object-orientation principle of abstraction requires
that a class provide an interface to the external world and
that it be accessible via this interface. Encapsulation sup-
ports this by establishing the concept of information hid-
ing, where any logic within the class outside of what is
exposed via the interface is not accessible to the external
world.

Service abstraction accomplishes much of the same as
object abstraction and encapsulation. Its purpose is to
hide the underlying details of the service so that only the
service contract is available and of concern to service
requestors.

Erl_08.qxd 6/30/05 11:01 AM Page 322

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Service-orientation and object-orientation (Part II) 323

Service-Orientation Related

Principle Object-Orientation Principles

service composability Object-orientation supports association concepts, such
as aggregation and composition. These, within a loosely
coupled context, also are supported by service-
orientation.

For example, the same way a hierarchy of objects can be
composed, a hierarchy of services can be assembled
through service composability.

service autonomy The quality of autonomy is more emphasized in service-
oriented design than it has been with object-oriented
approaches. Achieving a level of independence between
units of processing logic is possible through service-
orientation, by leveraging the loosely coupled relation-
ship between services.

Cross-object references and inheritance-related depend-
encies within object-oriented designs support a lower
degree of object-level autonomy.

service statelessness Objects consist of a combination of class and data and
are naturally stateful. Promoting statelessness within
services therefore tends to deviate from typical object-
oriented design.

Although it is possible to create stateful services and
stateless objects, the principle of statelessness is generally
more emphasized with service-orientation.

service discoverability Designing class interfaces to be consistent and self-
descriptive is another object-orientation best practice that
improves a means of identifying and distinguishing units
of processing logic. These qualities also support reuse by
allowing classes to be more easily discovered.

Discoverability is another principle more emphasized by
the service-orientation paradigm. It is encouraged that
service contracts be as communicative as possible to sup-
port discoverability at design time and runtime.

As it stands today, object-orientation and service-orientation are not necessarily com-

petitive paradigms. Service-orientation clearly has several roots in object-orientation,

and typical contemporary service-oriented solutions will consist of a mixture of services

Erl_08.qxd 6/30/05 11:01 AM Page 323

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

(that adhere to service-orientation principles) and object-oriented components. With a

balanced design, each set of principles can be properly positioned and leveraged to com-

plement and support each other.

SUMMARY OF KEY POINTS

• Several principles of service-orientation are related to and derived from object-

orientation principles.

• Some object-orientation principles, such as inheritance, do not fit into the service-

oriented world.

• Some service-orientation principles, such as loose coupling and autonomy, are not

directly promoted by object-orientation.

8.6 Native W eb service support for service-orientation principles

Having now worked through the individual principles of service-orientation in some

detail, it becomes evident that Web services provide inherent support for some of these

principles. It is important to recognize specifically which principles are built into the

structure of common Web services because this allows us to place an emphasis on those

that require a conscious effort to realize.

Table 8.2 recaps the principles of service-orientation and explains to what extent they are

natively supported by Web services.

Table 8.2 A look at which service-orientation principles are automatically supported by Web

services.

324 Chapter 8: Principles of Service-Orientation

Service-Orientation W eb Service Support

Principle

service reusability Web services are not automatically reusable. This quality
is related to the nature of the logic encapsulated and
exposed via the Web service.

service contract Web services require the use of service descriptions, mak-
ing service contracts a fundamental part of Web services
communication.

service loose coupling Web services are naturally loosely coupled through the
use of service descriptions.

Erl_08.qxd 6/30/05 11:01 AM Page 324

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Native Web service support for service-orientation principles 325

It turns out that half of the principles of service-orientation are natural characteristics of

common Web services. This underlines the synergy of the marriage between SOA and

the Web services technology platform and gives us a good indication as to why Web

services have been so successful in realizing SOA.

It also highlights the principles that require special attention when building service-

oriented solutions. The four principles identified as not being automatically provided by

Web services are:

• service reusability

• service autonomy

• service statelessness

• service discoverability

Service-Orientation Web Service Support

Principle

service abstraction Web services automatically emulate the black box model
within the Web services communications framework,
hiding all of the details of their underlying logic.

service composability Web services are naturally composable. The extent to
which a service can be composed, though, generally is
determined by the service design and the reusability of
represented logic.

service autonomy To ensure an autonomous processing environment
requires design effort. Autonomy is therefore not auto-
matically provided by a Web service.

service statelessness Statelessness is a preferred condition for Web services,
strongly supported by many WS-* specifications and the
document-style SOAP messaging model.

service discoverability Discoverability must be implemented by the architecture
and even can be considered an extension to IT infrastruc-
ture. It is therefore not natively supported by Web
services.

Erl_08.qxd 6/30/05 11:01 AM Page 325

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Chapters 11 through 15 discuss service modeling and design in detail and provide

guidelines to ensure that these important principles are taken into consideration when

building services for use within SOA.

These processes further emphasize the other four principles as well—though they may

be automatically implemented through the use of Web services, that does not mean they

will necessarily be properly realized. For example, the fact that Web services require the

use of service contracts has no bearing on how well individual service descriptions are

designed.

SUMMARY OF KEY POINTS

• Service abstraction, composability, loose coupling, and the need for service con-

tracts are native characteristics of Web services that are in full alignment with the

corresponding principles of service-orientation.

• Service reusability, autonomy, statelessness, and discoverability are not automati-

cally provided by Web services. Realizing these qualities requires a conscious

modeling and design effort.

326 Chapter 8: Principles of Service-Orientation

Erl_08.qxd 6/30/05 11:01 AM Page 326

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

Thomas Erl is an independent consultant with XMLTC Consulting in Vancouver,

Canada. H is previous b ook , Service-Oriented Architecture: A Field Guide to Integrating

X M L and W eb Services , b ecame the top-selling b ook of 2 0 0 4 in b oth W eb S ervices and

S O A categories. This guide addresses numerous integration issues and provides strate-

gies and b est practices for transitioning toward S O A .

Thomas is a memb er of O A S I S and is active in related research efforts, such as the XML

& W eb S ervices Integration F ramework (XW I F) . H e is a speak er and instructor for pri-

vate and pub lic events and conferences, and has pub lished numerous papers, including

articles for the W eb Services Journal, W L D J , and Ap p lication D evelop m ent T rends .

F or more information, visit http://www.thomaserl.com/technology/.

A b out the A uthor

Erl_AboutAuth.qxd 6/21/05 1:42 PM Page 721

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

SOA Systems Inc. is a consulting firm actively involved in the research and development

of service-oriented architecture, service-orientation, X M L , and W eb services standards

and technology. T hrough its research and enterprise solution projects SOA Systems has

developed a recogniz ed methodology for integrating and realiz ing service-oriented con-

cepts, technology, and architecture.

F or more information, visit www.soasystems.com.

O n e o f t h e c o n s u lt in g s e r v ic e s p r o v id e d b y S O A S y s t e m s is c o m p r e h e n s iv e S O A t r a n s i-

t io n p la n n in g a n d t h e o b je c t iv e a s s e s s m e n t o f v e n d o r t e c h n o lo g y p r o d u c t s .

F o r m o r e in f o r m a t io n , v is it www.soaplanning.com.

T h e c o n t e n t in t h is b o o k is t h e b a s is f o r a s e r ie s o f S O A s e m in a r s a n d w o r k s h o p s d e v e l-

o p e d a n d o ff e r e d b y S O A S y s t e m s .

F o r m o r e in f o r m a t io n , v is it www.soatraining.com.

A b o u t S O A S y s t e m s

Erl_AboutSOA.qxd 6/21/05 1:43 PM Page 723

Sample Chapter 8 from "Service-Oriented Architecture: Concepts, Technology, and Design" by Thomas Erl
For more information visit www.serviceoriented.ws.

