
PRENTICE HALL

PROFESSIONAL TECHNICAL REFERENCE

UPPER SADDLE RIVER, NJ 07458

WWW.PHPTR.COM

Service-Oriented
Architecture

A Field Guide to Integrating XML and

Web Services

Thomas Erl

erl.book Page iii Thursday, March 25, 2004 1:05 PMXXXXXXXXXXXXXXXXXXXXXXXX

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

v

C o n te n ts

Preface XIX

C h a p te r 1

In tro d u ctio n 1

1 .1 W h y th is g u id e is im p o rtan t ... 2

1 .1 .1 T h e h am m er an d X M L ... 2

1 .1 .2 X M L an d W eb s erv ices .. 3

1 .1 .3 W eb s erv ices an d S erv ice-O rien ted A rch itectu re 3

1 .1 .4 S erv ice-O rien ted A rch itectu re an d th e h am m er................................... 3

1 .1 .5 T h e h am m er an d y o u ... 4

1 .2 T h e X M L & W eb S erv ices In teg ratio n F ram ew o rk (X W IF) 4

1 .3 H o w th is g u id e is o rg an iz ed .. 5

1 .3 .1 Part I: T h e tech n ical lan d s cap e.. 6

1 .3 .2 Part II: In teg ratin g tech n o lo g y .. 7

1 .3 .3 Part III: In teg ratin g ap p licatio n s ... 9

1 .3 .4 Part IV : In teg ratin g th e en terp ris e .. 12

1 .3 .5 T h e ex ten d ed en terp ris e .. 13

1 .4 w w w .s erv iceo rien ted .w s .. 13

1 .5 C o n tact th e au th o r... 13

erlTOC.fm Page v Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

vi Contents

P art I

The technical landscape 15

Chapter 2

Introduction to XML technologies 17

2.1 E xtensible Markup Language (XML)... 18

2.1.1 Concepts.. 20

2.1.2 Schemas .. 21

2.1.3 Programming models... 22

2.1.4 Syntax .. 23

2.2 D ocument Type D efinitions (D TD) .. 24

2.2.1 Concepts.. 25

2.2.2 Syntax .. 25

2.3 XML Schema D efinition Language (XSD)....................................... 28

2.3.1 Concepts.. 28

2.3.2 Syntax .. 28

2.4 E xtensible Stylesheet Language Transformations (XSLT) 33

2.4.1 Concepts.. 34

2.4.2 Syntax .. 35

2.5 XML Q uery Language (XQ uery) ... 38

2.5.1 Concepts.. 38

2.5.2 Syntax .. 41

2.6 XML Path Language (XPath) .. 43

2.6 .1 Concepts.. 43

2.6 .2 Syntax .. 44

Chapter 3

Introduction to Web services technologies 47

3.1 Web services and the service-oriented architecture (SOA) 48

3.1.1 U nderstanding services ... 48

3.1.2 XML Web services ... 49

3.1.3 Service-oriented architecture (SOA) .. 50

3.1.4 Common principles of service-orientation.. 53

3.1.5 Web service roles .. 55

erlTOC.fm Page vi Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Contents vii

3.1.6 Web service interaction.. 57

3.1.7 Service models .. 61

3.1.8 Web service description structure .. 64

3.1.9 Introduction to first-generation Web services..................................... 66

3.2 Web Services Descritption Language (WSDL) 67

3.2.1 Abstract interface definition.. 68

3.2.2 Concrete (implementation) definition ... 70

3.2.3 Supplementary constructs ... 71

3.3 Simple Object Access Protocol (SOAP).. 72

3.3.1 SOAP messaging framework... 74

3.3.2 SOAP message structure .. 77

3.4 Universal Description, Discovery, and Integration (UDDI) 81

Chapter 4

Introduction to second-generation (WS-*) Web services
technologies 89

4.1 Second-generation Web services and the service-oriented
enterprise (SOE) ... 90

4.1.1 Problems solved by second-generation specifications 92

4.1.2 The second-generation landscape... 94

4.2 WS-Coordination and WS-Transaction ... 96

4.2.1 Concepts.. 96

4.2.2 Syntax .. 99

4.3 B usiness Process Execution Language for Web
Services (B PEL4WS) ... 100

4.3.1 R ecent business process specifications .. 100

4.3.2 Concepts.. 100

4.3.3 Syntax .. 106

4.4 WS-Security and the Web services security specifications............ 109

4.4.1 G eneral security concepts ... 110

4.4.2 Specifications... 111

4.4.3 XML K ey Management (XK MS)... 112

4.4.4 Extensible Access Control Markup Language (XACML)

and Extensible R ights Markup Language (XrML) 112

4.4.5 Security Assertion Markup Language (SAML)

and .N ET Passport... 112

erlTOC.fm Page vii Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

viii Contents

4.4.6 XML-Encryption and XML-Digital Signature 113

4.4.7 Secure Sockets Layer (SSL) ... 113

4.4.8 The WS-Security framework .. 115

4.4.9 Concepts and syntax ... 117

4.5 WS-ReliableMessaging.. 118

4.5.1 WS-Addressing .. 119

4.5.2 Concepts.. 119

4.5.3 Acknowledgements.. 121

4.5.4 Syntax .. 123

4.6 WS-Policy... 125

4.6.1 Concepts ... 126

4.6.2 Syntax .. 126

4.7 WS-Attachments .. 127

Part II

Integrating technology 131

Chapter 5

Integrating XML into applications 133

5.1 Strategies for integrating XML data representation........................ 135

5.1.1 Positioning XML data representation in your architecture 135

5.1.2 Think “tree” (a new way of representing data) 138

5.1.3 Easy now… (don’t rush the XML document model)......................... 139

5.1.4 Design with foresight.. 140

5.1.5 Focus on extensibility and reusability .. 142

5.1.6 Lose weight while modeling! (keeping your documents trim) 142

5.1.7 Naming element-types: performance vs. legibility 143

5.1.8 Applying XML consistently ... 144

5.1.9 Choosing the right API (DOM vs. SAX vs. Data Binding) 145

5.1.10 Securing XML documents.. 147

5.1.11 Pick the right tools.. 148

5.1.12 Don’t try this at home (fringe optimization strategies)...................... 150

5.2 Strategies for integrating XML data validation 151

5.2.1 XSD schemas or DTDs? .. 151

5.2.2 Positioning DTDs in your architecture.. 155

erlTOC.fm Page viii Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Contents ix

5.2.3 Positioning XSD schemas in your architecture 156

5.2.4 Understand the syntactical limitations of XSD schemas.................. 158

5.2.5 Understand the performance limitations of XSD schemas 160

5.2.6 Other fish in the sea (more schema definition languages)............... 160

5.2.7 Supplementing XSD schema validation... 162

5.2.8 Integrating XML validation into a distributed architecture 163

5.2.9 Avoiding over-validation... 165

5.2.10 Consider targeted validation .. 166

5.2.11 Building modular and extensible XSD schemas 167

5.2.12 Understand the integration limitations of your database.................. 169

5.3 Strategies for integrating XML schema administration................... 170

5.3.1 XML schemas and the silent disparity pattern 170

5.3.2 A step-by-step process .. 171

5.4 Strategies for integrating XML transformation................................ 174

5.4.1 Positioning XSLT in your architecture.. 174

5.4.2 Pre-transform for static caching ... 177

5.4.3 Create dynamic XSLT style sheets.. 178

5.4.4 Simplify aesthetic transformation with CSS 178

5.4.5 Understand the scalability limitations of XSLT................................. 178

5.4.6 Strategic redundancy ... 179

5.5 Strategies for integrating XML data q uerying................................. 179

5.5.1 Positioning XQuery in your architecture... 180

5.5.2 Multi-data source abstraction... 180

5.5.3 Establishing a data policy management layer.................................. 182

5.5.4 Unifying documents and data .. 183

Chapter 6

Integrating Web services into applications 187

6.1 Service models... 188

6.1.1 Utility services .. 189

6.1.2 Business services .. 191

6.1.3 Controller services ... 191

6.2 Modeling service-oriented component classes and
Web service interfaces... 194

6.2.1 Designing service-oriented component classes

(a step-by-step process) .. 195

erlTOC.fm Page ix Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

x Contents

6.2.2 Designing Web service interfaces

(a step-by-step process) .. 206

6.3 Strategies for integrating service-oriented encapsulation 214

6.3.1 Define criteria for consistent logic encapsulation

and interface granularity .. 215

6.3.2 Establish a standard naming convention ... 215

6.3.3 Parameter-driven vs. operation-oriented interfaces......................... 215

6.3.4 Designing for diverse granularity ... 216

6.3.5 Utilize generic services consistently .. 217

6.3.6 Establish separate standards for internal

and external services ... 218

6.3.7 Considering third-party Web services ... 219

6.4 Strategies for integrating service compositions 220

6.4.1 Everything in moderation, including service compositions............... 221

6.4.2 Modeling service compositions .. 221

6.4.3 Compound service compositions ... 224

6.5 Strategies for enhancing service functionality................................ 225

6.5.1 Outputting user-interface information... 225

6.5.2 Caching more than textual data ... 226

6.5.3 Streamlining the service design with usage patterns....................... 227

6.6 Strategies for integrating SOAP messaging................................... 228

6.6.1 SOAP message performance management 228

6.6.2 SOAP message compression techniques.. 228

6.6.3 Security issues with SOAP messaging .. 230

6.6.4 Easing into SOAP .. 231

Chapter 7

Integrating XML and databases 233

7.1 Comparing XML and relational databases 234

7.1.1 Data storage and security .. 235

7.1.2 Data representation ... 235

7.1.3 Data integrity and validation... 236

7.1.4 Data querying and indexing ... 236

7.1.5 Additional features ... 236

7.2 Integration architectures for XML and relational databases........... 237

7.2.1 Storing XML documents as database records 240

7.2.2 Storing XML document constructs as database records 242

erlTOC.fm Page x Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Contents xi

7.2.3 Using XML to represent a view of database queries 243

7.2.4 Using XML to represent a view of a relational data model............... 245

7.2.5 Using XML to represent relational data within

an in-memory database (IMDB)... 246

7.3 Strategies for integrating XML with relational databases 247

7.3.1 Target only the data you need ... 248

7.3.2 Avoiding relationships by creating specialized data views............... 249

7.3.3 Create XML-friendly database models... 249

7.3.4 Extending the schema model with annotations................................ 250

7.3.5 Non-XML data models in XML schemas.. 251

7.3.6 Developing a caching strategy... 251

7.3.7 Querying the XSD schema .. 252

7.3.8 Control XML output with XSLT... 252

7.3.9 Integrate XML with query limitations in mind 253

7.3.10 Is a text file a legitimate repository?... 254

7.3.11 Loose coupling and developer skill sets .. 254

7.4 Techniques for mapping XML to relational data............................. 255

7.4.1 Mapping XML documents to relational data..................................... 255

7.4.2 The Bear Sightings application .. 256

7.4.3 Intrinsic one-to-one and one-to-many relationships with XML 256

7.4.4 Mapping XML to relational data with DTDs...................................... 258

7.4.5 Mapping XML to relational data with XSD schemas 265

7.5 Database extensions.. 271

7.5.1 Proprietary extensions to SQL ... 271

7.5.2 Proprietary versions of XML specifications 272

7.5.3 Proprietary XML-to-database mapping .. 272

7.5.4 XML output format ... 272

7.5.5 Stored procedures ... 273

7.5.6 Importing and exporting XML documents .. 273

7.5.7 Encapsulating proprietary database extensions

within Web services ... 274

7.6 Native XML databases ... 274

7.6.1 Storage of document-centric data.. 274

7.6.2 Integrated XML schema models .. 275

7.6.3 Queries and data retrieval.. 275

7.6.4 Native XML databases for intermediary storage.............................. 276

erlTOC.fm Page xi Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

xii Contents

Part III

Integrating applications 278

Chapter 8

The mechanics of application integration 281

8.1 Understanding application integration.. 282

8.1.1 Types of integration projects.. 282

8.1.2 Typical integration requirements.. 282

8.1.3 Progress versus impact ... 283

8.1.4 Types of integration solutions .. 284

8.2 Integration levels .. 286

8.2.1 Data-level integration .. 287

8.2.2 Application-level integration ... 288

8.2.3 Process-level integration.. 289

8.2.4 Service-oriented integration ... 290

8.3 A guide to middleware.. 291

8.3.1 “EAI” versus “middleware” ... 291

8.3.2 Shredding the Oreo.. 291

8.3.3 Common middleware services and products 292

8.3.4 A checklist for buying middleware.. 294

8.4 Choosing an integration path ... 298

8.4.1 Two paths, one destination .. 299

8.4.2 Moving to EAI... 299

8.4.3 Common myths.. 299

8.4.4 The impact of an upgrade .. 300

8.4.5 Weighing your options ... 301

Chapter 9

Service-oriented architectures for legacy integration 303

9.1 Service models for application integration 304

9.1.1 Proxy services.. 305

9.1.2 Wrapper services ... 307

9.1.3 Coordination services (for atomic transactions)............................... 308

erlTOC.fm Page xii Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Contents xiii

9.2 Fundamental integration components.. 310

9.2.1 Adapters... 310

9.2.2 Intermediaries .. 312

9.2.3 Interceptors .. 314

9.3 Web services and one-way integration architectures..................... 314

9.3.1 Batch export and import... 315

9.3.2 Direct data access ... 319

9.4 Web services and point-to-point architectures 324

9.4.1 Tightly coupled integration between homogenous

legacy applications... 324

9.4.2 Tightly coupled integration between heterogeneous

applications .. 325

9.4.3 Integration between homogenous component-based

applications .. 332

9.4.4 Integration between heterogeneous component-based

applications .. 336

9.5 Web services and centralized database architectures................... 340

9.5.1 Traditional architecture .. 340

9.5.2 Using a Web service as a data access controller 341

9.6 Service-oriented analysis for legacy architectures......................... 344

Chapter 10

Service-oriented architectures for enterprise integration 353

10.1 Service models for enterprise integration architectures 354

10.1.1 Process services.. 354

10.1.2 Coordination services (for business activities)................................. 356

10.2 Fundamental enterprise integration architecture components 358

10.2.1 Broker .. 360

10.2.2 Orchestration ... 363

10.3 Web services and enterprise integration architectures 368

10.3.1 Hub and spoke... 369

10.3.2 Messaging bus... 372

10.3.3 Enterprise Service Bus (ESB).. 375

erlTOC.fm Page xiii Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

xiv Contents

Chapter 11

Service-oriented integration strategies 379

11.1 Strategies for streamlining integration endpoint interfaces 381

11.1.1 Make interfaces more generic.. 381

11.1.2 Consolidate legacy interfaces .. 382

11.1.3 Consolidate proxy interfaces.. 383

11.1.4 Supplement legacy logic with external logic 385

11.1.5 Add support for multiple data output formats 387

11.1.6 Provide alternative interfaces for different SOAP clients 387

11.2 Strategies for optimizing integration endpoint services.................. 389

11.2.1 Minimize the use of service intermediaries 389

11.2.2 Consider using service interceptors... 389

11.2.3 Data processing delegation ... 391

11.2.4 Caching the provider WSDL definition ... 392

11.3 Strategies for integrating legacy architectures 394

11.3.1 Create a transition architecture by adding partial

integration layers.. 394

11.3.2 Data caching with an IMDB.. 394

11.3.3 Utilizing a queue to counter scalability demands 395

11.3.4 Adding a mini-hub .. 397

11.3.5 Abstract legacy adapter technology... 398

11.3.6 Leveraging legacy integration architectures 398

11.3.7 Appending Web services to legacy integration architectures 400

11.4 Strategies for enterprise solution integration.................................. 401

11.4.1 Pragmatic service-oriented integration .. 402

11.4.2 Integrating disparate EAI products... 403

11.4.3 Respect your elders (building EAI around your legacy

environments) .. 404

11.4.4 Build a private service registry ... 406

11.5 Strategies for integrating Web services security 406

11.5.1 Learn about the Web services security specifications 407

11.5.2 Build services with a standardized service-oriented

security (SOS) model... 407

11.5.3 Create a security services layer... 407

11.5.4 Beware remote third-party services ... 409

11.5.5 Prepare for the performance impact .. 409

11.5.6 Define an appropriate system for single sign-on.............................. 410

erlTOC.fm Page xiv Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Contents xv

11.5.7 Don’t over-describe your services.. 410

11.5.8 Fortify or retreat integrated legacy systems..................................... 411

11.5.9 Take advantage of granular security.. 412

11.5.10 Web services and port 80 .. 413

11.5.11 SOAP attachments and viruses ... 413

11.5.12 Consider the development of security policies................................. 414

11.5.13 Don’t wait to think about administration ... 414

Part IV

Integrating the enterprise 417

Chapter 12

Thirty best practices for integrating XML 419

12.1 Best practices for planning XML migration projects 420

12.1.1 Understand what you are getting yourself into................................. 420

12.1.2 Assess the technical impact... 422

12.1.3 Invest in an XML impact analysis... 424

12.1.4 Assess the organizational impact .. 425

12.1.5 Targeting legacy data .. 426

12.2 Best practices for knowledge management within
XML projects .. 429

12.2.1 Always relate XML to data ... 429

12.2.2 Determine the extent of education required by your

organization ... 430

12.2.3 Customize a training plan .. 430

12.2.4 Incorporate mentoring into development projects............................ 433

12.3 Best practices for standardizing XML applications......................... 434

12.3.1 Incorporate standards .. 434

12.3.2 Standardize, but don’t over-standardize .. 435

12.3.3 Define a schema management strategy .. 436

12.3.4 Use XML to standardize data access logic 438

12.3.5 Evaluate tools prior to integration .. 439

12.4 Best practices for designing XML applications............................... 439

12.4.1 Develop a system for knowledge distribution................................... 439

12.4.2 Remember what the “X” stands for .. 441

erlTOC.fm Page xv Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

xvi Contents

12.4.3 Design with service-oriented principles (even if not

using Web services)... 441

12.4.4 Strive for a balanced integration strategy .. 442

12.4.5 Understand the roles of supplementary XML technologies 443

12.4.6 Adapt to new technology developments .. 444

Chapter 13

Thirty best practices for integrating Web services 447

13.1 Best practices for planning service-oriented projects..................... 448

13.1.1 Know when to use Web services ... 448

13.1.2 Know how to use Web services ... 449

13.1.3 Know when to avoid Web services .. 449

13.1.4 Moving forward with a transition architecture................................... 450

13.1.5 Leverage the legacy... 450

13.1.6 Sorry, no refunds (Web services and your bottom line)................... 451

13.1.7 Align ROIs with migration strategies .. 452

13.1.8 Build toward a future state ... 453

13.2 Best practices for standardizing Web services 454

13.2.1 Incorporate standards .. 454

13.2.2 Label the infrastructure .. 455

13.2.3 Design against an interface (not vice versa).................................... 456

13.2.4 Service interface designer ... 458

13.2.5 Categorize your services ... 458

13.3 Best practices for designing service-oriented environments.......... 459

13.3.1 Use SOAs to streamline business models....................................... 459

13.3.2 Research the state of second-generation specifications 459

13.3.3 Strategically position second-generation specifications................... 460

13.3.4 Understand the limitations of your platform 460

13.3.5 Use abstraction to protect legacy endpoints from change 461

13.3.6 Build around a security model.. 462

13.4 Best practices for managing service-oriented development
projects... 465

13.4.1 Organizing development resources ... 465

13.4.2 Don’t underestimate training for developers 466

13.5 Best practices for implementing Web services 467

13.5.1 Use a private service registry... 467

erlTOC.fm Page xvi Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Contents xvii

13.5.2 Prepare for administration.. 469

13.5.3 Monitor and respond to changes in the service hosting

environments ... 470

13.5.4 Test for the unknown ... 471

Chapter 14

Building the service-oriented enterprise (SOE) 473

14.1 SOA modeling basics... 474

14.1.1 Activities... 476

14.1.2 Services ... 477

14.1.3 Processes .. 477

14.2 SOE building blocks ... 479

14.2.1 SOE business modeling building blocks .. 480

14.2.2 SOE technology architecture building blocks................................... 487

14.2.3 Service-oriented security model... 496

14.3 SOE migration strategy .. 498

14.3.1 Overview of the Layered Scope Model (LSM) 498

14.3.2 Intrinsic Layer... 501

14.3.3 Internal layer .. 503

14.3.4 A2A layer ... 506

14.3.5 EAI layer .. 509

14.3.6 Enterprise layer.. 512

14.3.7 The extended enterprise .. 513

14.3.8 Customizing the LSM... 513

14.3.9 Alternatives to the LSM.. 515

About the Author 517

About the Photographs 519

Index 521

erlTOC.fm Page xvii Tuesday, February 8, 2005 9:17 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

449

���

����� �
	 �
������	����
����	 � ������� ���
� ��	 �����
��	 � ��� �!��� �����#"$� �����

% & ' %)(* + , - . / 0 , 1 0 * + 2 3 . - 4 / 5 5 1 5 6 + * . 7 1 0 * 8 3 . 1 * 5 , * 9 - . 3 : * 0 , + - / 6 * ; < =
% & ' >?(* + , - . / 0 , 1 0 * + 2 3 . + , / 5 9 / . 9 1 @ 1 5 6 A)* B + * . 7 1 0 * + - / 6 * ; < C
% & ' &?(* + , - . / 0 , 1 0 * + 2 3 . 9 * + 1 6 5 1 5 6 + * . 7 1 0 * 8 3 . 1 * 5 , * 9* 5 7 1 . 3 5 D * 5 , + - / 6 * ; C %
% & ' ;?(* + , - . / 0 , 1 0 * + 2 3 . D / 5 / 6 1 5 6 + * . 7 1 0 * 8 3 . 1 * 5 , * 9 9 * 7 * 4 3 - D * 5 ,- . 3 : * 0 , + - / 6 * ; C E
% & ' <?(* + , - . / 0 , 1 0 * + 2 3 . 1 D - 4 * D * 5 , 1 5 6 A)* B + * . 7 1 0 * + - / 6 * ; C F

e r l_ c h 1 3 .f m P a g e 4 4 9 T u e s d a y , M a r c h 1 6 , 2 0 0 4 5 :3 4 P M

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

448

eb services introduce technology layers that reside over those already

established by the X M L p latform . T herefore, the best p ractices for X M L

p rovided in the p revious chap ter also ap p ly to service-oriented environm ents. A ddi-

tionally, the contents of this chap ter can be further sup p lem ented by ex tracting

best p ractices from the design and m odeling strategies in C hap ter 6 .

1 3 .1 B e s t p r a c tic e s fo r p la n n in g s e r v ic e -o r ie n te d p r o je c ts

13.1.1 Know when to use Web services

“First define the extent to which you want to use Web services before developing them. Services

can be phased in at different levels, allowing you to customize an adoption strategy.”

If you know that Web services will be a strategic part of your enterprise, then you need

to start som ewhere. A single application project, for instance, provides a low-risk

opportunity for taking that fi rst step. Y ou will be able to integrate Web services to a lim -

ited ex tent and in a controlled m anner. T he key word here is “ lim ited,” because you do

not want to go too far with a non-standardiz ed integration effort.

A dditional reasons to consider Web services include:

• T he global IT industry is em bracing and supporting Web services. B y incorporating

them sooner, your team will gain an understanding of an im portant platform shift

that affects application architecture and technology.

• U se of Web services does not req uire an entirely new application architecture. T heir

loosely coupled design allows you to add a m odest am ount of sim ple services,

without m uch im pact on the rest of the application.

• If you are considering or already using a service-oriented design or business m odel,

you defi nitely will need to take a serious look at Web services. T he benefi ts of

incorporating service-oriented paradigm s within your enterprise can m otivate the

technical m igration to a Web services fram ework.

• M any current developm ent tools already support the creation of Web services, and

several shield the developer from the low-level im plem entation details. T his eases

NOTE

A ll b e s t p ra c tic e s in th is c h a p te r a re ita lic iz e d a n d e n c lo s e d in q u o ta tio n m a r k s .

W

erl_ch13.fm Page 448 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for planning service-oriented projects 449

the learning curve and allows for a faster adoption of Web service-related

technologies.

1 3 .1 .2 K now how to use W eb services

“Limit the scope of Web services in your production environment to the scope of your knowl-

edge. I f you know nothing, don’t service-orient anything that matters.”

Although the concept behind Web services has a great deal in common with traditional

component-based design, it is still significantly different. Adding improperly designed

Web services to your application may result in you having to redevelop them sooner

than you might expect.

If you are delivering serious business functionality, you should hold off until you are

confident in how Web services need to be integrated. L imit initial projects to low-risk

prototypes and pilot applications, until you (and your project team) attain an ade-

quate understanding of how Web services are best utilized within your technical

environment.

1 3 .1 .3 K now w hen to avoid W eb services

“E ven though Web services are becoming an important part of the I T mainstream, you should

begin incorporating them only where you know they will add value.”

If you don’t think that Web services will become a part of your enterprise environment

anytime in the near future, then it may be premature to add them now. Technologies

driving the Web services platform will continue to evolve, as will the front- and back-end

products that support them.

Additional reasons to consider avoiding Web services in the short-term, include:

• The base Web service technologies (S O AP , WS D L , UD D I) are fairly established and

robust, but vendor support can vary significantly for second-generation

specifications. You may be better off waiting for certain standards to receive

industry-wide support.

• Though development tools that support Web services will auto-generate a great deal

of the markup, they will not assist in optimizing your application design. H aving

your developers simply attach one or two Web services to an existing application,

without a real understanding of the technology behind them, could lead to a

convoluted and weakened architecture.

• S ome tools add proprietary extensions that will create dependencies on a vendor-

specific platform. The long-term implications of these extensions need to be

erl_ch13.fm Page 449 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

450 Chapter 13 • Thirty best practices for integrating Web services

understood fully before too much of your application relies on them. Otherwise,

opportunities for future interoperability may be compromised.

• Incorporating Web services may simply not be a requirement for autonomous

application environments. Web services become a much more important

consideration when taking interoperability requirements into account.

13.1.4 M oving forward with a transition architecture

“Consider a transition architecture that only introduces service-oriented concepts, without the

technology.”

A low-risk solution is an option if your focus is to gain experience with service-oriented

technologies and concepts, and you don’t have any pressing business requirements

that rely on the proper delivery of Web services. You can start your transition by first

delivering your application the way you normally would have, and then simply add-

ing application proxies, or a custom designed facade (wrapper) to the functionality

you’d like to expose via a service interface.

A benefit to this approach is that you can generally revert back to the traditional

component-based model without too much impact to your overall application design.

If your project requires a risk assessment wherein the usage of Web services is classified

as a significant risk, this can become the basis for a contingency plan.

If you’re just toying with the idea of introducing Web services into your application

design, but aren’t really sure to what extent it makes sense to do so, then you can also

consider starting with a feasibility analysis. This will allow you to measure the pros

and cons of the Web services platform, as they relate to your development project and

your technical application environment.

Alternatively, you could avoid Web services altogether, and still build your application

with a future SOA migration in mind. The X WIF modeling process in C hapter 6 pro-

vides a strategy for designing traditional component classes into service-oriented

classes suitable for Web service encapsulation. These same remodeled classes can still

be implemented within a non-service environment. The day you are ready to make the

transition, you will already be halfway there.

13.1.5 L everage the legacy

There are often very good reasons to replace or renew legacy environments in order to

bring them into a contemporary framework. A service-oriented integration architec-

ture, however, almost always provides an important alternative.

erl_ch13.fm Page 450 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for planning service-oriented projects 451

Build on what you have
“A lways consider reusing legacy logic before replacing it.”

Through the use of adapters and a service interface layer properly designed for func-

tional abstraction, Web services can let you take advantage of what you already have.

This can be a good first step to bringing application logic embedded in legacy systems

into your integrated enterprise.

Compared to replacing a legacy environment altogether, leveraging existing systems is

extremely cost-effective, and the process of integration can be relatively expedient.

(This option also acts as a good reference point for judging the R OI of a proposed

replacement project.)

U nderstand the limitations of a legacy foundation
“D efi ne functional capacity boundaries around legacy applications, and do not integrate beyond.”

There are challenges with bringing previously isolated applications into the interoper-

ability loop. Although doing so can immediately broaden the resources shared by

your enterprise, it can also severely tax a legacy environment not designed for external

integration.

As long as you understand the boundaries within which you can incorporate legacy

application logic, leveraging what you have makes a great deal of sense. Incidentally,

typical E AI solutions (service-oriented or not) are based on the same principle of utiliz-

ing adapter architectures to include various legacy environments. Many mitigate the

impact on legacy platforms through the use of intelligent adapters.

13.1.6 S orry, no refunds (Web services and your bottom line)

“Budget for the range of ex penses that follow Web services into an enterprise.”

Web services are expensive. That is, good Web services require a great deal of work to

ensure they truly are “good.” E ach service you develop can potentially become an

important part of your overall IT infrastructure. N ot only can services expose legacy

applications and various types of business (and reusable) functionality, they can repre-

sent and even enable entire business processes.

How a service is designed requires a solid knowledge of the business model within

which it will operate, as well as the technologies upon which it will be built. Services

that will form (or intend to participate in) a future SOA will also need to be in align-

ment with the design strategy and accompanying standards that are part of the overall

SOA implementation plan.

erl_ch13.fm Page 451 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

452 Chapter 13 • Thirty best practices for integrating Web services

If you custom-develop services to add on to existing legacy environments, costs will typi-

cally be lower than if you start your integration by investing in enterprise service-oriented

middleware products. Development costs can be especially moderate when using existing

development tools that support the creation of Web services.

Also, because Web services open the door to new integration opportunities, the quality

of the interface they expose is very important. Despite being classified as a loosely cou-

pled technology, once heavily integrated into an enterprise, many dependencies upon

service interfaces can still be created. Changing an interface after it has been established

can be a costly (and not to mention, messy) task, especially in environments that utilize

service assemblies.

Doing it right, however, will reap tangible benefits. Integration effort within a relatively

standardized SOA will drop significantly. Hooking new and legacy systems into an

established Web services-enabled architecture will generally require a fraction of the

effort and cost than traditional point-to-point integration projects. There are definite

and measurable returns to be had on your investment. It therefore pays to get it right

the first time. To get it right the first time, though, you certainly will have to pay.

13.1.7 Align R OIs with migration strategies

Though many organizations have already invested in XML architectures, a move to a

service-oriented design paradigm or a full-scale SOA often needs further justification.

This is especially true when large investments have already been made in (non-service-

oriented) EAI projects with which an organization is already quite content.

ROIs open eyes

“ROIs for service-oriented architectures can provide valuable information, beyond that req uired

to justify the project.”

Regardless of whether you are asked to justify the use of Web services or have already

decided to implement them in your environment, putting together a realistic ROI can

be an enlightening experience.

In addition to providing “evidence” that predicted cost savings resulting from the use

of Web services will be realized, properly researched ROIs can give you a clear idea as

to how long it will take for these benefits to be attained.

Iterating through ROI and migration strategy documents

“K eep revising the ROI as new information becomes available.”

It is common for the results of an ROI to shape an enterprise migration strategy. Flip that

thought around for a second, and consider using a migration strategy as input for the ROI.

erl_ch13.fm Page 452 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for planning service-oriented projects 453

The nature of the research that tends to be performed for migration strategies is more

focused on technology and implementation, rather than high-level organizational ben-

efits. An intelligent strategy for integrating a service-oriented architecture can lead to

much greater cost benefits than an ROI originally predicted. So, even if you used an

ROI to justify your migration project, you can typically refine that ROI (and often

improve the justifications) using the contents of your migration strategy.

Confused yet? Have a look at the diagram in Figure 1 3 .1 .

The initial SOA migration may be the most expensive part of an enterprise-wide initia-

tive however, the scope of your ROI will likely go beyond the migration phase. Further

revisions to an ROI will improve the accuracy of its predictions as they relate to subse-

quent phases in a long-term program.

ROIs for Web services can also be easier to justify than for other XML-based technolo-

gies. The benefits tend to be more tangible, because the interoperability enabled by the

service integration layer results in immediately recognizable savings.

13.1.8 Build toward a future state

“Design a service-oriented solution to accommodate its probable migration path."

The built-in features of a Web services framework are there, whether you choose to use

them or not. The foremost benefit of any service-oriented environment is the intrinsic

F ig u r e 13.1

An iterative cycle between a migration plan and an ROI.

“The proposed
roll-out of Web
services is...”

“This strategy
has the

following cost
implications...”

“The cost benefits
of integrating Web

services are...”

“These benefits can
be max imized with

the following
migration strategy...”

Migration
Strategy

ROI

erl_ch13.fm Page 453 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

454 Chapter 13 • Thirty best practices for integrating Web services

potential for immediate and future interoperability. You can take advantage of this

potential by designing application architectures for integration, even when not imme-

diately requiring integration.

Fostering integration requires a change in design standards, application architecture

development, and the overall mindset of the project team. For example, you can

facilitate local requestors as well as future remote requestors by providing both

coarse- and fine-grained interfaces based on standard naming and service descrip-

tion conventions.

To an extent, you can consider this new approach as building integration architectures,

regardless of whether they will be integrating anything immediately. Perhaps a better

suited term would be “integrate-able architectures.”

Chapter 14 fully explains this design approach by providing future state environments

for service-oriented integrated architectures and EAI solutions.

13.2 B es t p ra c tic es fo r s ta n d a rd iz in g Web s erv ic es

13.2.1 Incorporate standards

“Consider standards for Web services as standards for your infrastructure.”

In the corresponding section of the previous chapter,1 I used an analogy about obeying

traffic laws in order to highlight the importance of standards when integrating XML

within a development project. Let’s alter that analogy to define an approach for stan-

dardizing the integration of Web services.

A city’s commuting infrastructure is almost always standardized. A traffic sign on the

East side generally communicates a message (stop, yield, merge) the same way on the

West side. You, the driver, can go from any point A to any point B with the confidence

of knowing that the rules of navigation are being expressed consistently. Take your car

outside of the city boundary, though, and that might change.

As with any enterprise application development project where you have different

units of developers building different parts of the system, standardizing how each

part is designed is important for all the traditional reasons (robustness, maintenance,

etc.). In the service-oriented world, though, the real benefit is in establishing a stan-

dardized application interface. In an enterprise, this can potentially translate into a

standardized system for navigating:

1. The “Incorporate standards” best practice in Chapter 12 .

erl_ch13.fm Page 454 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for standardizing Web services 455

• application logic

• integration architectures

• corporate data stores

• parts of the enterprise infrastructure

Back to our analogy: A different city, let’s say in another country, will have a compatible

driving platform (paved streets, intersections, traffic lights), but there will be new signs

with new symbols, and often a different approach to driving altogether.

Navigating through non-standard environments will always slow your progress and

introduce new risks. When developing services within your enterprise, you are estab-

lishing infrastructure through which developers, integrators, and perhaps even busi-

ness partners may need to navigate in the years to come.

Simply adding a common platform for data exchange is not enough to ensure a quality

service-oriented environment. You need more than streets and intersections to guaran-

tee a safe and consistent driving experience.

13.2.2 Label the infrastructure

“Consider naming conventions as a means of labeling your infrastructure.”

When assembling the pieces of an integration architecture you can end up with a multi-

tude of interdependent components, each a necessary link in your solution. Since your

environment will consist of a mixture of legacy and contemporary application compo-

nents, you will already be faced with inconsistencies.

Contemporary integration solutions, however, are based on the concept of legacy

abstraction. Introducing new architectural layers, such as those provided by Web ser-

vices and adapters, allows you to hide the inconsistent characteristics of legacy envi-

ronments. You, in fact, are given the opportunity to customize these new application

endpoints. If you take a step back and look at the collection of potential endpoints that

exist in your enterprise, you essentially are viewing infrastructure.

When working on a project, it’s easy to label the components of an application arbi-

trarily. A name is something quickly added, so that you can move on to more important

functional tasks. The benefits of naming standards are often not evident until later in

the project cycle, when you actually have to start plugging things together. That’s when

introducing a naming convention can become especially inconvenient.

For instance, imagine yourself as an application architect in the midst of a development

project. Surveying the environment in which developers are deploying Web services,

erl_ch13.fm Page 455 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

456 Chapter 13 • Thirty best practices for integrating Web services

you recognize that it is riddled with inconsistent endpoint names. You convince your

Project Manager that the solution should adopt a naming convention in order to

increase consistency. The project team revisits the relevant component and service

interfaces they created, and your PM watches in horror as this wonderful solution

begins to crumble to the ground.

The names used to identify public component and service interfaces act as reference points

for other components and services. When you change a name, you therefore need to

change all references to it. As a result, renaming all your solution’s components and ser-

vices turns into a major project in itself, during which all further development is halted.

Finally, a week later, all references seem to have been updated and the solution is online

again. But… it isn’t working quite as well as before. The odd error, the odd communica-

tions problem — there are still some references hidden somewhere that need to be

changed. So, the solution undergoes another round of testing, the remaining references

are updated, and things finally return to normal.

You call up your PM (who’s been away on stress leave) and let him know everything is

up and running again and your components and services have new names! After a long

silence, he calmly says that he will be returning soon. He hangs up, turns back to his

therapist, and finishes discussing the fantasy where you are the PM who has to explain

the cost and time overruns to the project stakeholders, and he is the annoying architect

whose only concern is that things have pretty names.

Using a naming convention will not only improve the efficiency of administering your

solution, it will make the migration and deployment of new integration projects much

easier. Naming conventions reduce the risk of human error and the chance that a sim-

ple adjustment will lead to your solution mysteriously breaking down. As powerful

and sophisticated as enterprise solutions are these days, it can still take only one broken

link to bring them to a grinding halt.

One more thing
Don’t bury naming conventions amidst other standards documents. I highly recom-

mend you place them in a separate document that gets distributed to every member

of your project team. This document will act as a both a navigation and develop-

ment aid that can assist developers, administrators, and many others involved with

a project.

13.2.3 D esign against an interface (not vice versa)

In the previous section we introduced a best practice that promoted the use of a nam-

ing convention for labeling enterprise endpoints. When modeling a service-oriented

erl_ch13.fm Page 456 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for standardizing Web services 457

framework, we actually get to provide a complete description of these endpoints. The

standardization of these descriptions, therefore, becomes very significant (see Figure 13.2).

“Consistently describing service interfaces establishes a standard endpoint model. This results

in a standardized service-oriented integration architecture that can be positioned as part of

enterprise infrastructure.”

To ensure consistency in endpoint design, the common development process for a Web

service needs to be reversed. Instead of building our application logic and then express-

ing this functionality through an appropriate service interface, we need to make the

design of that interface our first task.

This is where the fore mentioned naming conventions are incorporated with your

enterprise-wide interface design standards. With a fundamental knowledge of what

Web services will be encapsulating, you can create a generic, consistent interface with

operation characteristics that comply to a standard model. With that in place, you can

then build the back-end logic. (For a step-by-step process on how to analyze and design

service interfaces using this approach, visit Chapter 6.)

Figure 13.2

Standardized integration endpoint services establishing a service-oriented

integration architecture.

legacy
application A

legacy
application B

legacy
application D

legacy
application C

standardized integration endpoint
service interfaces

WSDL

WSDL

WSDL

WSDL

WSDL

WSDL

WSDL

erl_ch13.fm Page 457 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

458 Chapter 13 • Thirty best practices for integrating Web services

The best way to ensure consistency across the interfaces within your Web services

framework is to make a resource responsible for the interface design. The role of the

service interface designer is explained next. Essentially this person is responsible for

both the modeling of Web services as well as the design of SOAP messages.

13.2.4 Service interface designer

Designing a Web service is a separate task from its actual development. A service inter-

face designer is responsible for ensuring that the external interface of all Web services is

consistent and clearly representative of the service’s intended business function. The

service interface designer typically will own the WSDL document, to which developers

will need to supply the implementation code. The service interface designer can also be

in charge of all SOAP documents to ensure a consistent message format as well.

Typical responsibilities:

• WSDL documents

• SOAP message documents

• interface clarity

• interface extensibility

• interface standards and naming conventions

Typical prerequisites:

• a background in component design

• high proficiency in WSDL and SOAP

• a proficiency in business analysis

• a good understanding of the organization’s business scope and direction

13.2.5 Categorize your services

“Use service models to classify and standardize service types.”

Every Web service is unique, but many end up performing similar functions and exhib-

iting common characteristics, allowing them to be categorized.

This guide refers to service categories as service models. A number of service mod-

els are described throughout this book, each with a specific purpose and a list of typ-

ical characteristics. Use these as a starting point, and customize them to whatever

extent necessary.

Here are some examples of how using service models can be beneficial:

erl_ch13.fm Page 458 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for designing service-oriented environments 459

• you can apply specific design standards to different service models

• the model type instantly communicates a service’s overall role and position within

an architecture

• models can be aligned with enterprise policies and security standards

• service models can be used to gauge the performance requirements of service-

oriented applications

13.3 Best practices for designing service-oriented environm ents

13.3.1 U se SOAs to streamline business models

“Service-oriented designs open up new opportunities for business automation. Rethink business

models to take advantage of these opportunities.”

If you find yourself amidst the technology surrounding Web services, don’t lose sight

of one of the most significant benefits this new design platform can provide. By offer-

ing a more fl exible, interoperable, and standardized model for hosting application

functionality, SOAs provide an opportunity for you to rethink and improve your

business processes.

For instance:

• A service-oriented architecture within your organization will increase the

interoperability potential between legacy systems. This will allow you to reevaluate

various business processes that rely on multiple applications or data sources.

• An array of generic business and utility services will provide a number of ways to

automate new parts of your business centers.

• Services can integrate with EAI solutions to deliver new business processes that, in

turn, integrate existing business processes.

To learn more about service-oriented business modeling, see Chapter 14.

13.3.2 Research the state of second-generation specifi cations

As more and more legacy application logic is expressed and represented within service-

oriented environments, the demand increases for Web services to support a wider

range of traditional business automation features.

The IT community responds to these demands by improving and sometimes replacing

technical specifications. The feature set of the Web services framework continues to

grow, driven both by standards organizations and major corporations, many of which

erl_ch13.fm Page 459 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

460 Chapter 13 • Thirty best practices for integrating Web services

collaboratively produce specifications that address new functional areas for Web ser-

vices to utilize.

“Approach the choice of each second-generation specification as a strategic decision-point.”

If you are building serious service-oriented solutions, you will be working with sec-

ond-generation specifications. Before you begin creating dependencies on the features

offered by one of these standards, you need to ensure that:

• it is sufficiently stable

• it is supported by your current platform vendors

• there is no emerging specification poised to take its place

• support for the standard is (or will be) provided by middleware or development

products you are considering

Don’t make the mistake of classifying the selection of these specifications as a purely

technical decision. It is a strategic design decision that will have implications on your

architecture, technology platform, and design standards. (To stay current with Web ser-

vices standards, visit www.specifications.ws.)

13.3.3 Strategically position second-generation specifications

“Design your SOA with a foreknowledge of emerging specifications.”

Regardless of whether you are planning to incorporate the features offered by some of

the newer second-generation Web services specifications, you should make it a point to

research the feature set provided by these standards. This will allow you to identify

those that may be potentially useful.

Whichever ones you classify as being significant or relevant can be positioned within

your future-state enterprise architecture. This is a key step in evolving a service-oriented

environment.

It is also important that you make this information publicly available to your project

teams. Architects will approach the design of application logic differently with a fore-

knowledge of how the role a future technology may affect their application designs.

13.3.4 Understand the limitations of your platform

While traveling the roads that lead to an SOA, you are bound to run into the odd pot-

hole or roadblock. As key industry standards continue to mature, so does the feature

set required for Web services to become fully capable of representing and expressing

sophisticated business logic in enterprise environments.

erl_ch13.fm Page 460 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for designing service-oriented environments 461

Until the second generation of Web services specifications is fully evolved, however,

there remains a rather volatile transition period, as many middleware and develop-

ment platforms compensate for the absence or immaturity of these standards by sup-

plying solutions of their own.

Proprietary extensions (the potholes)

“Define and work within the boundaries of your development platform.”

Several platforms supplement core Web services standards with proprietary exten-

sions. Often these new features will be based on draft versions of specifications

expected to become industry standards. The extent to which standards are supported,

however, can vary.

When considering the use of vendor-specific extensions, make sure you understand

how they are being implemented, and what dependencies they impose. K eep in mind

that if you commit to using them, you may need to migrate your services away from

these extensions at some point in the future.

In the meantime, however, they may very well address your immediate requirements,

while allowing you to proceed with a service-oriented application design.

Exclusive proprietary extensions (the roadblocks)

“If development platform boundaries are too restrictive, reconsider the platform.”

Some development platforms provide extensions to Web services at the cost of requir-

ing that all requestors of the service be built using the same technologies. This not only

defeats the purpose of designing service-oriented applications, it ties you to a platform

that offers little more than traditional component-based environments.

Within a controlled environment, these features may be attractive. If open interopera-

bility is one of your future goals, though, it’s time to make a U-turn.

13.3.5 Use abstraction to protect legacy endpoints from change

The service interface layer can give you a great deal of flexibility in how you con-

tinue evolving integrated legacy applications. Since the integration layer acts as an

intermediary between previously tightly bound legacy applications, a level of

decoupling is achieved. This makes the Web service the only contact point for either

legacy environment.

Use abstraction to improve configuration management

“Alter configuration management procedures around the abstraction benefit introduced by the

service interface layer.”

erl_ch13.fm Page 461 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

462 Chapter 13 • Thirty best practices for integrating Web services

A side benefit to the loose coupling introduced by the service integration layer is

improved configuration management of integrated legacy applications.

As shown in Figure 13.3, you can upgrade application A without requiring changes to

application B. However, depending on the nature of the upgrade, application A’s Web

service may be affected. Modifying the integration layer, though, tends to be much eas-

ier than making changes to legacy logic.

Although this aspect of an SOA isn’t the first benefit that comes to mind, it can have

major implications on how you administer and maintain applications in your enterprise.

Use abstraction to support wholesale application changes
“Take advantage of the service integration layer by more aggressively evolving integrated legacy

environments.”

The level of abstraction that can be provided by service-oriented integration architec-

tures can significantly reduce the impact of platform migrations.

Since the two applications displayed in Figure 13.4 only know of service endpoints,

you can replace application A entirely without any changes required to application B.

Any required modifications to application A’s Web service almost always will be less

disruptive than changes to application B’s integration channel.

13.3.6 Build around a security model

Especially when developing second-generation Web services, incorporating a sound

security model is a key part of your design process.

Figure 13.3

Application A is upgraded without affecting application B.

Web
service

 application A

Web
service

new
version

integration
layer

application B

no
change

integration
layer

erl_ch13.fm Page 462 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for designing service-oriented environments 463

Security requirements define boundaries, real boundaries
“The functional application design needs to be built upon the security model, (not the other way

around).”

Putting together a design, and perhaps even building a preliminary version of your

application without serious consideration for the underlying security model is a com-

mon mistake. It’s like going out on stage for your performance, and then, before you

can finish, getting pulled back with one of those long hooks. (It’s the security require-

ments pulling that hook, in case you didn’t get that.)

Web services security models are unique, complex, and multi-dimensional. There are

many factors to consider that will result in firm boundaries that will shape and scope

the remaining parts of your application design.

Define the scope of the security model
“A key part of a standardized service-oriented enterprise is a service-oriented security (SOS)

model.”

When we talk about a Web services security model, it can mean a number of different

things. A model can represent the security rules and technologies that apply to an

application. It also, however, can be standardized within the enterprise.

The enterprise SOS model displayed in Figure 13.5 establishes a standard security plat-

form that includes policies and the technologies that enforce them. As shown in

Figure 13.6, this model can be implemented within a dedicated security services layer

that also becomes an application architecture standard. (For more information, see

Chapter 11.)

Figure 13.4

Application A is replaced without affecting application B.

Web
service

 application A

Web
service

new
application

integration
layer

application B

no
change

integration
layer

erl_ch13.fm Page 463 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

464

F
ig

u
re

 1
3
.5

T
h
e
 s

e
rv

ic
e
-o

ri
e
n
te

d
 s

e
c
u
ri
ty

 (
S

O
S

)
m

o
d
e
l.

e
x
te

n
d

e
d

e
n

te
rp

ri
s
e

b
u

s
in

e
s
s

W
e

b
 s

e
rv

ic
e

W
e

b
 s

e
rv

ic
e

o
p

e
ra

ti
o

n

s
e

rv
ic

e
-o

ri
e

n
te

d
in

te
g

ra
ti
o

n
a

rc
h

it
e

c
tu

re

s
e

rv
ic

e
-o

ri
e

n
te

d
a

p
p

lic
a

ti
o

n
a

rc
h

it
e

c
tu

re

s
e

rv
ic

e
-o

ri
e

n
te

d
e

n
te

rp
ri
s
e

a
rc

h
it
e

c
tu

re

s
e

rv
ic

e
-o

ri
e

n
te

d
 s

e
c
u

ri
ty

 (
S

O
S

)
m

o
d

e
l

erl_ch13.fm Page 464 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for managing service-oriented development projects 465

The required use of a SOS model can impose significant restrictions upon application

designs. This is offset, however, by the fact that its use also alleviates application devel-

opment projects from having to deal with many of the issues relating to security. Most

of the decisions will have already been made; all the project team has to deliver is an

application that conforms to SOS standards.

13.4 Best practices for managing service-oriented development projects

13.4.1 Organizing development resources

“Group development teams around logical business tasks.”

A common mistake in development projects that incorporate a limited SOA is to have

one team deliver the Web services, and the remaining team(s) develop the balance of

the application. From a resourcing perspective this approach makes sense, because you

have each team working with technologies that match their respective skill set. It can,

however, create a disconnect between developers responsible for building parts of an

application that deliver a logical unit of business functionality.

When you break an application down into its primary (or even secondary) business

functions, you end up with the equivalent of a series of subprojects that collectively

make up the application’s feature set. Each of these subprojects will typically require

the creation of a number of application components, some of which may be encapsu-

lated within Web services. Development teams need to be grouped in accordance with

these subprojects, so that the performance and functionality of individual business

tasks can be streamlined.

Figure 13.6

A separate security layer can implement the SOS model.

Web
service

 application A

Web
service

integration
layer

application B

enterprise
security

layer

Web
service

integration
layer

erl_ch13.fm Page 465 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

466 Chapter 13 • Thirty best practices for integrating Web services

If you have only one or two developers qualified to build Web services, then you

should consider sharing them across more than one development team. As long as they

are actively participating with their respective teams, they will be able to optimize the

Web services to best accommodate each business task.

13.4.2 Don’t underestimate training for developers

“Ensure that your developers and designers are capable of applying the right blend of business

and technical intelligence to every Web service.”

How much do you tip a developer? Well, that depends on how good the service is …

OK, let’s officially end my sad career in IT comedy by moving on to the importance of

ensuring that your development (and design) staff has the proper skills to build and

integrate Web services. If they are new to this platform, you may not want to just hand

them a book and ask them to “go figure it out.”

Here’s why:

• In many cases, Web services affect the application’s business model. The

execution of an automated business task will differ within an application,

depending on how Web services are utilized. Developers may not be aware of the

relationship between the service they are developing and its associated business

task(s). This becomes an especially critical issue when building controller and

process services.

• Recurring requirements for Web services are that they be generic, openly accessible,

and relatively independent. To achieve these characteristics, the functionality within

a service needs to be carefully defined. This requires knowledge of the business

functions an application needs to deliver now, as well as the level of interoperability

it will have to provide in the future. G enerally, developers are only focused on

immediate project requirements.

• When teams of developers are involved with an application development project, a

set of new standards will likely be required to ensure that Web services are

implemented consistently. Developers can participate in the creation of these

standards; typically, though, standards need to be established by those already

proficient with the technologies.

• It is easy to create Web services with contemporary development tools. This can give

a developer a false sense of confidence. It is, in fact, easy to create Web services, but

only bad ones.

erl_ch13.fm Page 466 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for implementing Web services 467

13.5 Best practices for implementing Web services

13.5.1 Use a private service registry

Once Web services establish themselves as a common part of your enterprise, they will

begin to evolve, requiring interface upgrades and spawning new generations of ser-

vices. Pretty soon, it will be difficult to keep track of the many service interfaces, espe-

cially since some will always be in a state of transition. (To learn more about private

registries and UDDI, read through the tutorial in Chapter 4.)

Centralize service descriptions in a service repository

“Incorporate a private service registry to centralize published service descriptions into one

accessible resource.”

A private service registry can house the collective descriptions of all your Web services.

It acts as the central repository for current service interface information to which any-

one interested will go to discover and learn about an enterprise’s service framework.

Its use has immediate benefits, including:

• efficient access to service interfaces (no time wasted searching)

• preserving the integrity of published service interfaces (“published” is a state

represented by the repository)

• encouraging the discovery of generic and reusable services

M ake the use of a service registry mandatory

“Require the use of a private service registry and keep it current. Otherwise it won’t be useful.”

If people lose confidence in a service registry, it can quickly become the least popular

part of your IT environment. If you locate a service interface in a local UDDI registry,

and you’re not sure it is the latest version, you won’t be inclined to use it. Instead,

you’ll probably phone around until you find the original service developer, from whom

you’ll get the most recent WSDL file.

If, however, the use of this registry is a requirement that is strictly adhered to, it will

become a core part of your administrative infrastructure, supporting development

projects as a resource centre for published Web service endpoints.

Assign a resource to maintain the registry

“To make enterprise service registries a functional part of an organization, assign a Service

Library M anager.”

erl_ch13.fm Page 467 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

468 Chapter 13 • Thirty best practices for integrating Web services

Private service registries need to provide a high level of availability and dependability.

Not only will the registry serve individuals who manually search it for various service

details, it may also need to facilitate dynamic discovery. At that point, it could become a

critical resource.

The best way to ensure that a registry is kept current and available is to assign owner-

ship of these responsibilities. Maintaining a service registry is a unique job, in that it

involves an uncommon combination of skills. Below we provide a description of this

role, called the Service Library Manager.

Such a resource becomes especially important if your organization opens its registry to

external business partners. In that case, the Service Library Manager also needs to man-

age the authentication and authorization of users from outside of the organization.

Responsible for maintaining the service library and the local UDDI registry, this indi-

vidual may need to be included in official application design reviews so that proposed

service designs can be evaluated and compared against existing and other planned ser-

vices.

The Service Library Manager will also own the organization’s utility services. Any

changes required to these services will need to be approved by the library manager,

and implemented in such a way that they are sufficiently generic for future use, and do

not break existing interfaces already in use by service requestors.

Responsible for:

• service library

• publishing of service descriptions

• maintenance and design of utility services

• review of application designs incorporating services

Typical prerequisites:

• UDDI or a services broker product

• a background in component design

• a good understanding of the organization’s business scope and direction

NOTE

In smaller IT environments, you can consider combining the roles of Service

Library Manager and X ML Data Custodian.

erl_ch13.fm Page 468 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for implementing Web services 469

13.5.2 P repare for administration

An often overlooked aspect of projects implementing service-oriented applications are

the subsequent maintenance tasks required to keep these environments going.

“Be prepared for the costs and complexities in administering a service-oriented enterprise.”

Increased interoperability results in a higher amount of dependencies between applica-

tion environments, namely their Web service endpoints. With a high level of integration

comes the responsibility of keeping your Web services running smoothly, regardless of

what’s thrown at them. High usage volumes, error conditions, and other environmen-

tal variables need to be anticipated.

Entire product suites are available to maintain Web services, although many are plat-

form specific. If you are deploying Web services without such an environment, admin-

istration can eventually become an overly burdensome task. You may want to prevent

this from happening by investigating some of the application hosting environments

offered by service-oriented EAI solutions.

Either way, administration costs need to be properly represented in project budgets.

Otherwise, the support infrastructure required by service-oriented architectures will

not be sufficient. This, in turn, can jeopardize the success of the application and those

that integrate with it.

Here we introduce the Service Administrator role, a resource responsible for the mainte-

nance and monitoring of these hosting environments.

In an environment where many Web services are deployed and utilized, an admin-

istration system needs to be in place in order to ensure a reliable runtime hosting

environment.

Service administrators need to be proficient in the use of maintenance and monitoring

tools. They will be the ones who need to respond to production issues relating to the

availability and performance of Web services. This role is similar to that of a webmaster

for a Web site. The administrator is required to keep track of usage statistics and look

out for (and preemptively avoid) performance bottlenecks.

This position is especially relevant in organizations offering Web services that can

be accessed externally. In order to effectively handle unpredictable usage volumes,

the administrator must be able to respond quickly when performance trends start

heading south.

erl_ch13.fm Page 469 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

470 Chapter 13 • Thirty best practices for integrating Web services

In EAI environments, this role is often assumed by the same person managing the inte-

gration brokers. Typical responsibilities include:

• assessing the need for specific administration tools and servers

• evaluating and perhaps integrating these products

• monitoring the use of individual Web services

• analyzing usage statistics and identifying trends and patterns

• assessing the impact of the Web service use on underlying legacy applications or

components

• identifying and tracking dependencies (service requestors) of deployed Web services

• managing version control over Web services

• being involved with version control of legacy applications represented by Web

services

Typical prerequisites:

• proficiency in Web services administration products

• fair knowledge of WSDL and SOAP

• good understanding of service deployment techniques and related security settings

13.5.3 Monitor and respond to changes in the service hosting environments

“Be responsive to increased infrastructure requirements.”

When Web services represent the endpoints to existing or new integration channels,

they can easily become the busiest parts of an integrated environment. This can tax the

underlying areas of the infrastructure supporting those services. To avoid performance

bottlenecks, it’s a good idea to survey your existing infrastructure and identify any part

that may need to be upgraded.

In preparing for any new application, there will be obvious areas where upgrades will

be required. New servers, more memory, and strategically located routers are all typical

requirements needed to support incoming application hosting environments.

To achieve an optimized environment designed to host Web services, though, you fre-

quently need to see them in action first. The communications framework introduced by

Web services brings with it new protocols, different types of runtime processing, and

an overall shift in where this processing can physically occur.

It is difficult to predict exactly where and to what extent processing requirements will

change. Therefore, it is often best not to fully upgrade your infrastructure until you

erl_ch13.fm Page 470 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Best practices for implementing Web services 471

have a good idea of what the actual performance requirements will be. One way of

determining this prior to making your Web services available for production use is to

perform a series of stress and volume tests.

Another approach is to measure and respond to performance requirements by carefully

monitoring production usage. For instance:

1. Phase in the production release of your application.

2 . Closely monitor performance and study usage patterns.

3 . Respond quickly with hardware upgrades where required.

13.5.4 Test for the unknown

“…but they said that if we build a service-oriented architecture, we’d be freed from the

problems involved with connecting disparate technology platforms…” Sure, but you

still need to build your Web services framework using a vendor-specific development

platform, along with a vendor-manufactured SOAP server.

Products used to establish an environment for service-oriented data exchange may pro-

vide various levels of support for various (mostly second-generation) Web services

specifications. This can lead to some discrepancies in areas such as WSDL document

interpretation and SOAP message header processing.

“To guarantee the level of interoperability promised by Web services, incorporate a multi-client test

phase. This precaution is especially important when working with second-generation specifications.”

The simplest way to address this issue is to increase the amount of testing each newly

created Web service will be subjected to. Your test strategy should require that services

be tested with a range of clients representative of potential service requestors.

For instance, you may have one project team creating an application using J2EE, while

the other is basing theirs on .NET. Even though neither team needs their application to

integrate with the other’s, their respective testing phases should still include client

requestors based on both J2EE and .NET.

This issue is comparable to the age-old presentation-related problems Web page designers

faced when having to accommodate Netscape and Microsoft browsers. There were a num-

ber of discrepancies in how HTML was rendered and in how client-side script was pro-

cessed. Conditional logic often had to be used in order to output different page content.

When first developing a Web service, the effort to fix processing discrepancies is gener-

ally negligible. However, if these problems remain undetected until after services have

been deployed, then you’ve got yourself a redevelopment project on hand.

erl_ch13.fm Page 471 Tuesday, February 8, 2005 9:22 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Thomas Erl is an independent consultant with XMLTC Consulting in Vancouver,

Canada. H is previous b ook , Service-Oriented Architecture: A Field Guide to Integrating

X M L and W eb Services , b ecame the top-selling b ook of 2 0 0 4 in b oth W eb S ervices and

S O A categories. This guide addresses numerous integration issues and provides strate-

gies and b est practices for transitioning toward S O A .

Thomas is a memb er of O A S I S and is active in related research efforts, such as the XML

& W eb S ervices Integration F ramework (XW I F) . H e is a speak er and instructor for pri-

vate and pub lic events and conferences, and has pub lished numerous papers, including

articles for the W eb Services Journal, W L D J , and Ap p lication D evelop m ent T rends .

F or more information, visit http://www.thomaserl.com/technology/.

A b out the A uthor

Erl_AboutAuth.qxd 6/21/05 1:42 PM Page 721

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

SOA Systems Inc. is a consulting firm actively involved in the research and development

of service-oriented architecture, service-orientation, X M L , and W eb services standards

and technology. T hrough its research and enterprise solution projects SOA Systems has

developed a recogniz ed methodology for integrating and realiz ing service-oriented con-

cepts, technology, and architecture.

F or more information, visit www.soasystems.com.

One of the consulting services provided b y SOA Systems is comprehensive SOA transi-

tion planning and the ob jective assessment of vendor technology products.

F or more information, visit www.soaplanning.com.

T he content in this b ook is the b asis for a series of SOA seminars and w ork shops devel-

oped and offered b y SOA Systems.

F or more information, visit www.soatraining.com.

Ab out SOA Systems

Erl_AboutSOA.qxd 6/21/05 1:43 PM Page 723

by Thomas Erl. For more information visit www.serviceoriented.ws.
Sample Chapter 13 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

