
PRENTICE HALL

PROFESSIONAL TECHNICAL REFERENCE

UPPER SADDLE RIVER, NJ 07458

WWW.PHPTR.COM

Service-Oriented
Architecture

A Field Guide to Integrating XML and

Web Services

Thomas Erl

erl.book Page iii Thursday, March 25, 2004 1:05 PMXXXXXXXXXXXXXXXXXXXXXXXX

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

v

C o n te n ts

Preface XIX

C h a p te r 1

In tro d u ctio n 1

1 .1 W h y th is g u id e is im p o rtan t ... 2

1 .1 .1 T h e h am m er an d X M L ... 2

1 .1 .2 X M L an d W eb s erv ices .. 3

1 .1 .3 W eb s erv ices an d S erv ice-O rien ted A rch itectu re 3

1 .1 .4 S erv ice-O rien ted A rch itectu re an d th e h am m er................................... 3

1 .1 .5 T h e h am m er an d y o u ... 4

1 .2 T h e X M L & W eb S erv ices In teg ratio n F ram ew o rk (X W IF) 4

1 .3 H o w th is g u id e is o rg an iz ed .. 5

1 .3 .1 Part I: T h e tech n ical lan d s cap e.. 6

1 .3 .2 Part II: In teg ratin g tech n o lo g y .. 7

1 .3 .3 Part III: In teg ratin g ap p licatio n s ... 9

1 .3 .4 Part IV : In teg ratin g th e en terp ris e .. 12

1 .3 .5 T h e ex ten d ed en terp ris e .. 13

1 .4 w w w .s erv iceo rien ted .w s .. 13

1 .5 C o n tact th e au th o r... 13

erlTOC.fm Page v Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

vi Contents

P art I

The technical landscape 15

Chapter 2

Introduction to XML technologies 17

2.1 E xtensible Markup Language (XML)... 18

2.1.1 Concepts.. 20

2.1.2 Schemas .. 21

2.1.3 Programming models... 22

2.1.4 Syntax .. 23

2.2 D ocument Type D efinitions (D TD) .. 24

2.2.1 Concepts.. 25

2.2.2 Syntax .. 25

2.3 XML Schema D efinition Language (XSD)....................................... 28

2.3.1 Concepts.. 28

2.3.2 Syntax .. 28

2.4 E xtensible Stylesheet Language Transformations (XSLT) 33

2.4.1 Concepts.. 34

2.4.2 Syntax .. 35

2.5 XML Q uery Language (XQ uery) ... 38

2.5.1 Concepts.. 38

2.5.2 Syntax .. 41

2.6 XML Path Language (XPath) .. 43

2.6 .1 Concepts.. 43

2.6 .2 Syntax .. 44

Chapter 3

Introduction to Web services technologies 47

3.1 Web services and the service-oriented architecture (SOA) 48

3.1.1 U nderstanding services ... 48

3.1.2 XML Web services ... 49

3.1.3 Service-oriented architecture (SOA) .. 50

3.1.4 Common principles of service-orientation.. 53

3.1.5 Web service roles .. 55

erlTOC.fm Page vi Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Contents vii

3.1.6 Web service interaction.. 57

3.1.7 Service models .. 61

3.1.8 Web service description structure .. 64

3.1.9 Introduction to first-generation Web services..................................... 66

3.2 Web Services Descritption Language (WSDL) 67

3.2.1 Abstract interface definition.. 68

3.2.2 Concrete (implementation) definition ... 70

3.2.3 Supplementary constructs ... 71

3.3 Simple Object Access Protocol (SOAP).. 72

3.3.1 SOAP messaging framework... 74

3.3.2 SOAP message structure .. 77

3.4 Universal Description, Discovery, and Integration (UDDI) 81

Chapter 4

Introduction to second-generation (WS-*) Web services
technologies 89

4.1 Second-generation Web services and the service-oriented
enterprise (SOE) ... 90

4.1.1 Problems solved by second-generation specifications 92

4.1.2 The second-generation landscape... 94

4.2 WS-Coordination and WS-Transaction ... 96

4.2.1 Concepts.. 96

4.2.2 Syntax .. 99

4.3 B usiness Process Execution Language for Web
Services (B PEL4WS) ... 100

4.3.1 R ecent business process specifications .. 100

4.3.2 Concepts.. 100

4.3.3 Syntax .. 106

4.4 WS-Security and the Web services security specifications............ 109

4.4.1 G eneral security concepts ... 110

4.4.2 Specifications... 111

4.4.3 XML K ey Management (XK MS)... 112

4.4.4 Extensible Access Control Markup Language (XACML)

and Extensible R ights Markup Language (XrML) 112

4.4.5 Security Assertion Markup Language (SAML)

and .N ET Passport... 112

erlTOC.fm Page vii Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

viii Contents

4.4.6 XML-Encryption and XML-Digital Signature 113

4.4.7 Secure Sockets Layer (SSL) ... 113

4.4.8 The WS-Security framework .. 115

4.4.9 Concepts and syntax ... 117

4.5 WS-ReliableMessaging.. 118

4.5.1 WS-Addressing .. 119

4.5.2 Concepts.. 119

4.5.3 Acknowledgements.. 121

4.5.4 Syntax .. 123

4.6 WS-Policy... 125

4.6.1 Concepts ... 126

4.6.2 Syntax .. 126

4.7 WS-Attachments .. 127

Part II

Integrating technology 131

Chapter 5

Integrating XML into applications 133

5.1 Strategies for integrating XML data representation........................ 135

5.1.1 Positioning XML data representation in your architecture 135

5.1.2 Think “tree” (a new way of representing data) 138

5.1.3 Easy now… (don’t rush the XML document model)......................... 139

5.1.4 Design with foresight.. 140

5.1.5 Focus on extensibility and reusability .. 142

5.1.6 Lose weight while modeling! (keeping your documents trim) 142

5.1.7 Naming element-types: performance vs. legibility 143

5.1.8 Applying XML consistently ... 144

5.1.9 Choosing the right API (DOM vs. SAX vs. Data Binding) 145

5.1.10 Securing XML documents.. 147

5.1.11 Pick the right tools.. 148

5.1.12 Don’t try this at home (fringe optimization strategies)...................... 150

5.2 Strategies for integrating XML data validation 151

5.2.1 XSD schemas or DTDs? .. 151

5.2.2 Positioning DTDs in your architecture.. 155

erlTOC.fm Page viii Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Contents ix

5.2.3 Positioning XSD schemas in your architecture 156

5.2.4 Understand the syntactical limitations of XSD schemas.................. 158

5.2.5 Understand the performance limitations of XSD schemas 160

5.2.6 Other fish in the sea (more schema definition languages)............... 160

5.2.7 Supplementing XSD schema validation... 162

5.2.8 Integrating XML validation into a distributed architecture 163

5.2.9 Avoiding over-validation... 165

5.2.10 Consider targeted validation .. 166

5.2.11 Building modular and extensible XSD schemas 167

5.2.12 Understand the integration limitations of your database.................. 169

5.3 Strategies for integrating XML schema administration................... 170

5.3.1 XML schemas and the silent disparity pattern 170

5.3.2 A step-by-step process .. 171

5.4 Strategies for integrating XML transformation................................ 174

5.4.1 Positioning XSLT in your architecture.. 174

5.4.2 Pre-transform for static caching ... 177

5.4.3 Create dynamic XSLT style sheets.. 178

5.4.4 Simplify aesthetic transformation with CSS 178

5.4.5 Understand the scalability limitations of XSLT................................. 178

5.4.6 Strategic redundancy ... 179

5.5 Strategies for integrating XML data q uerying................................. 179

5.5.1 Positioning XQuery in your architecture... 180

5.5.2 Multi-data source abstraction... 180

5.5.3 Establishing a data policy management layer.................................. 182

5.5.4 Unifying documents and data .. 183

Chapter 6

Integrating Web services into applications 187

6.1 Service models... 188

6.1.1 Utility services .. 189

6.1.2 Business services .. 191

6.1.3 Controller services ... 191

6.2 Modeling service-oriented component classes and
Web service interfaces... 194

6.2.1 Designing service-oriented component classes

(a step-by-step process) .. 195

erlTOC.fm Page ix Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

x Contents

6.2.2 Designing Web service interfaces

(a step-by-step process) .. 206

6.3 Strategies for integrating service-oriented encapsulation 214

6.3.1 Define criteria for consistent logic encapsulation

and interface granularity .. 215

6.3.2 Establish a standard naming convention ... 215

6.3.3 Parameter-driven vs. operation-oriented interfaces......................... 215

6.3.4 Designing for diverse granularity ... 216

6.3.5 Utilize generic services consistently .. 217

6.3.6 Establish separate standards for internal

and external services ... 218

6.3.7 Considering third-party Web services ... 219

6.4 Strategies for integrating service compositions 220

6.4.1 Everything in moderation, including service compositions............... 221

6.4.2 Modeling service compositions .. 221

6.4.3 Compound service compositions ... 224

6.5 Strategies for enhancing service functionality................................ 225

6.5.1 Outputting user-interface information... 225

6.5.2 Caching more than textual data ... 226

6.5.3 Streamlining the service design with usage patterns....................... 227

6.6 Strategies for integrating SOAP messaging................................... 228

6.6.1 SOAP message performance management 228

6.6.2 SOAP message compression techniques.. 228

6.6.3 Security issues with SOAP messaging .. 230

6.6.4 Easing into SOAP .. 231

Chapter 7

Integrating XML and databases 233

7.1 Comparing XML and relational databases 234

7.1.1 Data storage and security .. 235

7.1.2 Data representation ... 235

7.1.3 Data integrity and validation... 236

7.1.4 Data querying and indexing ... 236

7.1.5 Additional features ... 236

7.2 Integration architectures for XML and relational databases........... 237

7.2.1 Storing XML documents as database records 240

7.2.2 Storing XML document constructs as database records 242

erlTOC.fm Page x Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Contents xi

7.2.3 Using XML to represent a view of database queries 243

7.2.4 Using XML to represent a view of a relational data model............... 245

7.2.5 Using XML to represent relational data within

an in-memory database (IMDB)... 246

7.3 Strategies for integrating XML with relational databases 247

7.3.1 Target only the data you need ... 248

7.3.2 Avoiding relationships by creating specialized data views............... 249

7.3.3 Create XML-friendly database models... 249

7.3.4 Extending the schema model with annotations................................ 250

7.3.5 Non-XML data models in XML schemas.. 251

7.3.6 Developing a caching strategy... 251

7.3.7 Querying the XSD schema .. 252

7.3.8 Control XML output with XSLT... 252

7.3.9 Integrate XML with query limitations in mind 253

7.3.10 Is a text file a legitimate repository?... 254

7.3.11 Loose coupling and developer skill sets .. 254

7.4 Techniques for mapping XML to relational data............................. 255

7.4.1 Mapping XML documents to relational data..................................... 255

7.4.2 The Bear Sightings application .. 256

7.4.3 Intrinsic one-to-one and one-to-many relationships with XML 256

7.4.4 Mapping XML to relational data with DTDs...................................... 258

7.4.5 Mapping XML to relational data with XSD schemas 265

7.5 Database extensions.. 271

7.5.1 Proprietary extensions to SQL ... 271

7.5.2 Proprietary versions of XML specifications 272

7.5.3 Proprietary XML-to-database mapping .. 272

7.5.4 XML output format ... 272

7.5.5 Stored procedures ... 273

7.5.6 Importing and exporting XML documents .. 273

7.5.7 Encapsulating proprietary database extensions

within Web services ... 274

7.6 Native XML databases ... 274

7.6.1 Storage of document-centric data.. 274

7.6.2 Integrated XML schema models .. 275

7.6.3 Queries and data retrieval.. 275

7.6.4 Native XML databases for intermediary storage.............................. 276

erlTOC.fm Page xi Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

xii Contents

Part III

Integrating applications 278

Chapter 8

The mechanics of application integration 281

8.1 Understanding application integration.. 282

8.1.1 Types of integration projects.. 282

8.1.2 Typical integration requirements.. 282

8.1.3 Progress versus impact ... 283

8.1.4 Types of integration solutions .. 284

8.2 Integration levels .. 286

8.2.1 Data-level integration .. 287

8.2.2 Application-level integration ... 288

8.2.3 Process-level integration.. 289

8.2.4 Service-oriented integration ... 290

8.3 A guide to middleware.. 291

8.3.1 “EAI” versus “middleware” ... 291

8.3.2 Shredding the Oreo.. 291

8.3.3 Common middleware services and products 292

8.3.4 A checklist for buying middleware.. 294

8.4 Choosing an integration path ... 298

8.4.1 Two paths, one destination .. 299

8.4.2 Moving to EAI... 299

8.4.3 Common myths.. 299

8.4.4 The impact of an upgrade .. 300

8.4.5 Weighing your options ... 301

Chapter 9

Service-oriented architectures for legacy integration 303

9.1 Service models for application integration 304

9.1.1 Proxy services.. 305

9.1.2 Wrapper services ... 307

9.1.3 Coordination services (for atomic transactions)............................... 308

erlTOC.fm Page xii Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Contents xiii

9.2 Fundamental integration components.. 310

9.2.1 Adapters... 310

9.2.2 Intermediaries .. 312

9.2.3 Interceptors .. 314

9.3 Web services and one-way integration architectures..................... 314

9.3.1 Batch export and import... 315

9.3.2 Direct data access ... 319

9.4 Web services and point-to-point architectures 324

9.4.1 Tightly coupled integration between homogenous

legacy applications... 324

9.4.2 Tightly coupled integration between heterogeneous

applications .. 325

9.4.3 Integration between homogenous component-based

applications .. 332

9.4.4 Integration between heterogeneous component-based

applications .. 336

9.5 Web services and centralized database architectures................... 340

9.5.1 Traditional architecture .. 340

9.5.2 Using a Web service as a data access controller 341

9.6 Service-oriented analysis for legacy architectures......................... 344

Chapter 10

Service-oriented architectures for enterprise integration 353

10.1 Service models for enterprise integration architectures 354

10.1.1 Process services.. 354

10.1.2 Coordination services (for business activities)................................. 356

10.2 Fundamental enterprise integration architecture components 358

10.2.1 Broker .. 360

10.2.2 Orchestration ... 363

10.3 Web services and enterprise integration architectures 368

10.3.1 Hub and spoke... 369

10.3.2 Messaging bus... 372

10.3.3 Enterprise Service Bus (ESB).. 375

erlTOC.fm Page xiii Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

xiv Contents

Chapter 11

Service-oriented integration strategies 379

11.1 Strategies for streamlining integration endpoint interfaces 381

11.1.1 Make interfaces more generic.. 381

11.1.2 Consolidate legacy interfaces .. 382

11.1.3 Consolidate proxy interfaces.. 383

11.1.4 Supplement legacy logic with external logic 385

11.1.5 Add support for multiple data output formats 387

11.1.6 Provide alternative interfaces for different SOAP clients 387

11.2 Strategies for optimizing integration endpoint services.................. 389

11.2.1 Minimize the use of service intermediaries 389

11.2.2 Consider using service interceptors... 389

11.2.3 Data processing delegation ... 391

11.2.4 Caching the provider WSDL definition ... 392

11.3 Strategies for integrating legacy architectures 394

11.3.1 Create a transition architecture by adding partial

integration layers.. 394

11.3.2 Data caching with an IMDB.. 394

11.3.3 Utilizing a queue to counter scalability demands 395

11.3.4 Adding a mini-hub .. 397

11.3.5 Abstract legacy adapter technology... 398

11.3.6 Leveraging legacy integration architectures 398

11.3.7 Appending Web services to legacy integration architectures 400

11.4 Strategies for enterprise solution integration.................................. 401

11.4.1 Pragmatic service-oriented integration .. 402

11.4.2 Integrating disparate EAI products... 403

11.4.3 Respect your elders (building EAI around your legacy

environments) .. 404

11.4.4 Build a private service registry ... 406

11.5 Strategies for integrating Web services security 406

11.5.1 Learn about the Web services security specifications 407

11.5.2 Build services with a standardized service-oriented

security (SOS) model... 407

11.5.3 Create a security services layer... 407

11.5.4 Beware remote third-party services ... 409

11.5.5 Prepare for the performance impact .. 409

11.5.6 Define an appropriate system for single sign-on.............................. 410

erlTOC.fm Page xiv Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Contents xv

11.5.7 Don’t over-describe your services.. 410

11.5.8 Fortify or retreat integrated legacy systems..................................... 411

11.5.9 Take advantage of granular security.. 412

11.5.10 Web services and port 80 .. 413

11.5.11 SOAP attachments and viruses ... 413

11.5.12 Consider the development of security policies................................. 414

11.5.13 Don’t wait to think about administration ... 414

Part IV

Integrating the enterprise 417

Chapter 12

Thirty best practices for integrating XML 419

12.1 Best practices for planning XML migration projects 420

12.1.1 Understand what you are getting yourself into................................. 420

12.1.2 Assess the technical impact... 422

12.1.3 Invest in an XML impact analysis... 424

12.1.4 Assess the organizational impact .. 425

12.1.5 Targeting legacy data .. 426

12.2 Best practices for knowledge management within
XML projects .. 429

12.2.1 Always relate XML to data ... 429

12.2.2 Determine the extent of education required by your

organization ... 430

12.2.3 Customize a training plan .. 430

12.2.4 Incorporate mentoring into development projects............................ 433

12.3 Best practices for standardizing XML applications......................... 434

12.3.1 Incorporate standards .. 434

12.3.2 Standardize, but don’t over-standardize .. 435

12.3.3 Define a schema management strategy .. 436

12.3.4 Use XML to standardize data access logic 438

12.3.5 Evaluate tools prior to integration .. 439

12.4 Best practices for designing XML applications............................... 439

12.4.1 Develop a system for knowledge distribution................................... 439

12.4.2 Remember what the “X” stands for .. 441

erlTOC.fm Page xv Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

xvi Contents

12.4.3 Design with service-oriented principles (even if not

using Web services)... 441

12.4.4 Strive for a balanced integration strategy .. 442

12.4.5 Understand the roles of supplementary XML technologies 443

12.4.6 Adapt to new technology developments .. 444

Chapter 13

Thirty best practices for integrating Web services 447

13.1 Best practices for planning service-oriented projects..................... 448

13.1.1 Know when to use Web services ... 448

13.1.2 Know how to use Web services ... 449

13.1.3 Know when to avoid Web services .. 449

13.1.4 Moving forward with a transition architecture................................... 450

13.1.5 Leverage the legacy... 450

13.1.6 Sorry, no refunds (Web services and your bottom line)................... 451

13.1.7 Align ROIs with migration strategies .. 452

13.1.8 Build toward a future state ... 453

13.2 Best practices for standardizing Web services 454

13.2.1 Incorporate standards .. 454

13.2.2 Label the infrastructure .. 455

13.2.3 Design against an interface (not vice versa).................................... 456

13.2.4 Service interface designer ... 458

13.2.5 Categorize your services ... 458

13.3 Best practices for designing service-oriented environments.......... 459

13.3.1 Use SOAs to streamline business models....................................... 459

13.3.2 Research the state of second-generation specifications 459

13.3.3 Strategically position second-generation specifications................... 460

13.3.4 Understand the limitations of your platform 460

13.3.5 Use abstraction to protect legacy endpoints from change 461

13.3.6 Build around a security model.. 462

13.4 Best practices for managing service-oriented development
projects... 465

13.4.1 Organizing development resources ... 465

13.4.2 Don’t underestimate training for developers 466

13.5 Best practices for implementing Web services 467

13.5.1 Use a private service registry... 467

erlTOC.fm Page xvi Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Contents xvii

13.5.2 Prepare for administration.. 469

13.5.3 Monitor and respond to changes in the service hosting

environments ... 470

13.5.4 Test for the unknown ... 471

Chapter 14

Building the service-oriented enterprise (SOE) 473

14.1 SOA modeling basics... 474

14.1.1 Activities... 476

14.1.2 Services ... 477

14.1.3 Processes .. 477

14.2 SOE building blocks ... 479

14.2.1 SOE business modeling building blocks .. 480

14.2.2 SOE technology architecture building blocks................................... 487

14.2.3 Service-oriented security model... 496

14.3 SOE migration strategy .. 498

14.3.1 Overview of the Layered Scope Model (LSM) 498

14.3.2 Intrinsic Layer... 501

14.3.3 Internal layer .. 503

14.3.4 A2A layer ... 506

14.3.5 EAI layer .. 509

14.3.6 Enterprise layer.. 512

14.3.7 The extended enterprise .. 513

14.3.8 Customizing the LSM... 513

14.3.9 Alternatives to the LSM.. 515

About the Author 517

About the Photographs 519

Index 521

erlTOC.fm Page xvii Tuesday, February 8, 2005 9:17 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

233

7

Integrating XML and
datab as es

7.1 Comparing XML and relational databases page 234

7.2 Integration arc h itec tu res for XML and relational

databases page 237

7.3 S trategies for integrating XML w ith relational

databases page 247

7.4 T ec h niq u es for mapping XML to relational data page 25 5

7.5 D atabase ex tensions page 271

7.6 N ativ e XML databases page 274

erl_ch07.fm Page 233 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

234

he n t a lk in g a b o u t X M L t o D B A s a n d d a t a a n a ly s t s in the p a s t , m y e n thu s i-

a s m fr e q u e n t ly w a s g r e e t e d w ith a le v e l o f s u s p ic io n tha t o ft e n m a d e m e fe e l

lik e I w a s t r y in g t o s e ll u n d e r c o a t in g o n a u s e d c a r. X M L ’s a c c e p t a n c e in the o v e r a ll I T

m a in s t r e a m ha s s in c e in c r e a s e d d r a m a t ic a lly , b e c a u s e it ha s b e c o m e a r e la t iv e ly c o m -

m o n p a r t o f d a t a b a s e e n v ir o n m e n t s . S t ill, the r e is a s ig n ifi c a n t la c k o f u n d e r s t a n d in g

a s t o ho w o r w hy X M L c a n o r s ho u ld in t e g r a t e w ith t r a d it io n a l c o r p o r a t e r e p o s it o r ie s .

One of the obstacles to both conceptualizing and realizing the integration of XML format-

ted data w ith traditional databases is simply the fact that XML w as not designed w ith

databases in mind. XML’s origins lie in document meta tagging, and the XML language

w as dev eloped to infuse structure and meaning into the v ast amount of presentation-

oriented content on the Internet.

N ow that it has ev olv ed into a core application dev elopment technology , it is being

used for a v ariety of sophisticated data representation and transportation purposes. It

has found a home in just about ev ery lay er of application architecture, ex cept… the

relational database tier. H ere it fi ts less comfortably (F igure 7 .1) .

XML documents and relational databases represent and structure data in v ery different

w ay s. T his draw s an inv isible border betw een the tw o env ironments, and getting these

data platforms to cooperate effi ciently can be as challenging as negotiating a treaty

betw een tw o v ery different cultures. A nd guess w hat — y ou’re the arbitrator.

7 .1 C o m p a r in g X M L a n d r e la tio n a l d a ta b a s e s

B efore creating any sort of data integration strategy , it is important to fi rst understand

the fundamental differences betw een relational databases and the XML technology set,

F ig u r e 7 .1

Application components and databases have different data format preferences.

W

“I w ant X M L
formatted

data”

“I w ant
relational

data”

application database

erl_ch07.fm Page 234 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Comparing XML and relational databases 235

and their respective relationships to your corporate data. This section covers some of

the major areas of data management, and contrasts how they are addressed by each

platform.

7 .1 .1 D ata storage and secu rity

The most basic feature of any data management system is its ability to securely store

information. This is where relational databases provide an unparalleled set of features,

barely comparable to XML’s simple file format (see Table 7.1).

7 .1 .2 D ata representation

XML documents and relational databases approach the representation of data from dif-

ferent ends of the spectrum. XML documents introduce a cohesive, structured hierar-

chy, whereas R D BMS s provide a more fl exible relational model (see Table 7.2).

These two platforms face significant integration challenges because XML document

hiearchies are difficult to recreate within relational databases, and relational data models

are difficult to represent within XML documents.

N O T E

T hou gh important to designing a robu st service-oriented architectu re, inte-

grating XML and databases does not req u ire or depend on the presence of

Web services. As a resu lt, there is little reference to Web services in this

chapter, allowing y ou to apply the architectu res and strategies to environ-

ments ou tside of S O As.

N O T E

We are not mak ing this comparison to provide a choice between the two plat-

forms. We are only assessing the featu res of each to gain an u nderstanding

of their differences.

T able 7.1 D ata storage and secu rity comparison

D atabases XML

P hy sical

storage

Highly controlled storage environ-
ment.

P lain text.

S ecu rity P roprietary security, or a security
system integrated with the operat-
ing system.

P rovides granular control over most
aspects of the data and its structure.

No built-in security. Access control
is set on a file or folder level, or is
managed by the application.

erl_ch07.fm Page 235 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

236 Chapter 7 • Integrating XML and databases

Understanding these simple limitations is the most important part of creating an effec-

tive integration strategy.

7.1.3 Data integrity and validation

In Table 7.3 , we look at how data management systems provided by databases and

XML preserve the integrity of the data they represent.

7.1.4 Data querying and index ing

Next, in Table 7.4 , is a comparison of generic searching and indexing features.

7.1.5 Additional features

Rounding up this high-level comparison is Table 7.5 , providing a list of features found

in both database and XML technologies, most of which are exclusive to their respective

environment.

Table 7.2 Data representation comparison

Databases XML

Data model Relational data model, consisting of
tabular data entities (tables), with
rows and columns.

Hierarchical data model, composed
of document structures with ele-
ment and attribute nodes.

Data types A wide variety of data types typi-
cally are provided, including sup-
port for binary data.

XSD schemas are eq uipped with a
comparable set of data types.

Data element

relationships

C olumn definitions can interrelate
within and between tables, accord-
ing to DDL rules.

References can be explicitly or
intrinsically defined between
elements.

SU MMAR Y OF K EY POINTS

• XML and relational databases are fundamentally incompatible data platforms, created

for different purposes.

• The requirement to integrate these two types of technologies stems from XML’s

popularity in application environments.

• An understanding of how XML documents differ from relational databases is required in

order to devise effective integration strategies.

erl_ch07.fm Page 236 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Integration architectures for XML and relational databases 237

7.2 Integration arc h itec tures for XML and relational databases

As you look through each of the upcoming architecture diagrams, it is worth remem-

bering that there is no one standard approach. The many different integration require-

ments organizations tend to have in this part of the application architecture demand a

flexible set of integration models that will vary in design and scope.

If you are already using XML within your application, or if you already have an appli-

cation design, follow this short process to best assess the suitability of an alternative

architecture:

1. Describe the role XML currently plays within your application. Make sure you

have a clear understanding as to how and why XML is being utilized.

Table 7.3 Data validation comparison

Databases XML

Schema The loose structure of relational
schemas provide a great deal of flex-
ibility as to how data entities can
exist and interrelate.

XML schemas are more rigid in that
they are restricted to an element
hierarchy.

More sophisticated schema tech-
nologies, such as the XML Schema
language, provide functionality
that can achieve detachment of
elements.

Referential

integrity

E xtensive support is provided to
ensure that relationship constraints
are enforced.

Typical features include the ability
to propagate changes in related col-
umns via cascading deletions and
updates.

Although references simulate inter-
element relationships to an extent,
no comparable enforcement of
RDBMS-like referential integrity is
provided.

Additionally, while relational data-
bases enforce referential integrity at
the time data is altered, a separate
validation step is required by the
XML parser.

Supplemental

validation

Validation can be further supple-
mented through the use of triggers
and stored procedures.

XSD schemas can be designed to
validate elements and attributes
according to custom rules.

Additional technologies, such as
XSLT and Schematron, can be used
to further refine the level of
validation.

erl_ch07.fm Page 237 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

238 Chapter 7 • Integrating XML and databases

2. Pick a primary business task and map the processing steps between the application

components. Show how and where XML data is being manipulated and transported.

3 . W hen you reach the database layer, identify how the XML-formatted data cur-

rently is being derived, where inserts and updates are required, and how often the

same body of data is reused.

4 . Review each of the integration architectures in this section, and identify the one

closest to your current or planned design.

5 . Study the pros, cons, and suitability guidelines to ensure that your current architec-

ture provides the best possible integration design for your application require-

ments. If it doesn’t, consider one of the alternatives.

6 . Finally, if no one architecture adequately meets your requirements, pick the one

that is the closest, and modify it to whatever extent you need to.

Table 7.4 Data querying and indexing comparison

Databases XML

Q uery

languages

Most commercial RDBMSs support
the industry standard SQ L. Many
add proprietary extensions.

Single XML documents are most
commonly queried via the DOM
and SAX APIs, or by using XPath
expressions.

The XML technology most compa-
rable to SQ L is XQ uery, which pro-
vides a comprehensive syntax that
also supports cross-document
searches.

Q uery result

manipulation

SQ L provides a number of output
parameters that can group, sort, and
further customize the query results.

XSLT and XQ uery can be used to
manipulate the output of XML for-
matted data. Both languages can
group, sort, and perform complex
data manipulation.

Q uerying

across multiple

repositories

Several database platforms allow
multi-data source queries, as long as
each repository supports the proto-
col used to issue the query.

XPath cannot query multiple XML
documents, however XQ uery can.

XSLT can also query multiple docu-
ments (using the document function).

Indexing Sophisticated indices are supported,
customizable to the column level.

RDBMS indices can be fine-tuned
for optimized querying.

The XML technology set does not
support a comparable indexing
extension.

XML document indices are often
created and maintained by custom
applications.

erl_ch07.fm Page 238 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Integration architectures for XML and relational databases 239

Table 7.5 Comparison of various additional features

Databases XML

Transactions Most databases provide transac-
tion and rollback support, and
most support the common ACID3

properties.

Some RDBMSs also come with
two-phase commit capabilities,
extending transaction support
across multiple databases.

The XML platform does not yet pro-
vide an industry standard transaction
technology (although support for
ACID properties is provided
through the use of the
WS-Coordination and WS-Transaction
second-generation Web services speci-
fications).

Multi-user

access, record

locking

To preserve the integrity of data
during concurrent usage, most
databases provide a means of
controlling access to data while it
is being updated.

RDBMSs typically support either
page-level or row-level record
locking, as well as different lock-
ing models (e.g., pessimistic,
optimistic).

Access to XML documents existing as
physical files is essentially file I/ O
controlled by the application via the
XML parser.

There are no comparable locking
features.

Platform

dependence

Relational databases are commer-
cial products that impose a ven-
dor-dependent storage platform.
However, data generally can be
easily migrated between data-
bases from different vendors.

The family of XML specifications are
open industry standards and are not
dependent on any commercial
platform.

Schema

dependence

Schemas are a required part of a
database.

The schema features are provided
by the database software.

Schemas are an optional part of XML
documents.

If used, one of several available
schema technologies can be chosen.

Schema reuse The schema is bound to the data-
base instance.

Schemas can be encapsulated with
DDL, but not easily reused with-
out the help of modeling tools.

The schema exists as an independent
entity.

Multiple documents can use the same
schema.

Nesting Table columns generally do not
provide intrinsic nesting.

XML elements can contain nested child
elements.

3. ACID represents the following four standard transaction properties: atomicity, consistency, iso-
lation, and durability.

erl_ch07.fm Page 239 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

240 Chapter 7 • Integrating XML and databases

7.2.1 Storing XML documents as database records

This approach simply places entire XML documents into dedicated database tables,

putting the responsibility of validating and processing these documents on the applica-

tion (Figure 7.1). The new tables are separated from the current data model, and there-

fore will likely not affect the existing relational data.

Corresponding schemas can be stored (and cached) with the application, and linked

dynamically upon retrieval of the document. Alternatively, schemas can be placed in

the database with the XML documents, where they can be retrieved together, as illus-

trated in Figure 7.2.

To accommodate this architecture, schemas and XML documents can be placed in sepa-

rate tables, united by a simple one-to-many relationship. If a single XML document can

link to multiple schemas, then this will require a many-to-many relationship.

If XML document and schema constructs (modules) are supported, then additional

tables would need to be added in order to support one-to-many relationships

between the tables hosting the master XML documents and schemas, and their

respective constructs.

Figure 7.1

A physical architecture illustrating XML documents

being stored and retrieved from a relational database.

database serverapplication server

XML
document

XML
documents

schemas

erl_ch07.fm Page 240 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

by Thomas Erl. For more information visit www.serviceoriented.ws.

Integration architectures for XML and relational databases 241

Also, it is advisable for the primary and foreign key values used by the database to be rep-

resented within the document and schema content (perhaps as embedded annotations).

This will allow you to efficiently reference the source record of an XML document or

schema being processed by the application.

Suitable for:

• Redundant storage of legacy data, preformatted in XML. This would require some

method of synchronization, depending on how static the data remains.

• Storing new application data that does not relate to existing legacy data. If there’s

any chance that this information will need to tie into your existing legacy data, then

this may not be such a great idea. However, in situations where you simply want to

store complete XML documents that are fully independent of the existing legacy

repository, this provides a simple way of adding XML support without having to

worry about mapping.

• Storing state information. Session data that needs to be temporarily (or even

permanently) persisted fits perfectly into this model. The data may require only a

simple database table to store the document within a single column.

Figure 7.2

A variation of this architecture, where schemas are stored alongside XML documents,

within the database.

one

many

Schema

ID
SchemaText

Document

ID
DocumentText
SchemaID

database serverapplication server

XML
document

and
schema

XML
document

and
schema

erl_ch07.fm Page 241 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

242 Chapter 7 • Integrating XML and databases

Pros:

• XML data is mobile and easily detached. Alternatively, should integration with the

existing data model be required, it can still be performed by simply removing the

new tables.

• Allows for an easier migration to a native XML database, as these database systems

tend to store XML documents in their entirety as well.

• Existing data models will likely not be affected.

Cons:

• Queries against these new tables may be limited to full-text searches, which are

notoriously slow.

• Even when using full-text searches, many databases are not XML-aware (cannot

distinguish tags from data). This translates into poor search results that require

further processing to be useful.

• This design will introduce a level of data modeling disparity.

• If the option to store schemas with XML documents is chosen, more runtime

processing will be required to retrieve a single document. (This can be mitigated by

introducing an application caching strategy that retrieves the schema periodically.)

7.2.2 Storing XML document constructs as database records

Similar to the previous architecture, this design approach (illustrated in Figure 7.3) also

introduces a loosely coupled model that does not affect the existing legacy data. The

difference is that here an XML document is divided into logical constructs (decom-

posed into smaller XML chunks), each of which is stored independently.

To accommodate this architecture, schemas can be divided into multiple granular sche-

mas. These schema modules can also be assembled dynamically into a composite

schema instance that matches the structure of the generated XML document (as shown

in Figure 7.4). For more information about modular schema design, see the “ Building

modular and extensible XSD schemas” section in Chapter 5.

Suitable for:

• Object-based or class-based application interfaces.

• New application data requiring flexible document structures that are determined at

runtime. This type of requirement typically is encountered when supporting

parameter-driven business rules.

erl_ch07.fm Page 242 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Integration architectures for XML and relational databases 243

Figure 7.3

A physical architecture where XML constructs are stored independently in a

relational database, and then assembled into a complete XML document at

runtime by the application.

Figure 7.4

Schema modules are stored and assembled alongside XML document

constructs in the database.

database server

XML
constructs

application server

XML
constructs

schema

assembled
XML

document

XML
constructs

application server database server

assembled
XML document and
associated schema

XML
constructs

schema
modules

schema
modules

erl_ch07.fm Page 243 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

244 Chapter 7 • Integrating XML and databases

Pros:

• Establishes a highly reusable data platform.

• Existing data model likely will not be impacted.

Cons:

• Introduces a potentially complex data model extension, and places the burden of

document assembly on the application.

• Can complicate validation, as creating and maintaining schemas for all possible

construct combinations may become an unwieldy task.

• All of the cons listed under the previous section.

7.2.3 Using XML to represent a view of database queries

This model allows for dynamically created views of database queries, represented

as XML documents. The resulting architecture (shown in Figure 7.5) is most com-

mon when working with the proprietary XML extensions provided by database

vendors.

Figure 7.5

In this physical architecture, the requested data is returned

in the format of an XML document by the database.

database serverapplication server

XML
document

schemas

erl_ch07.fm Page 244 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Integration architectures for XML and relational databases 245

Suitable for:

• Dynamically created XML documents with a limited lifespan. In other words, for

when XML is used as a transport format for legacy data.

• XML documents auto-generated by proprietary database extensions. Most database

vendors provide a way of outputting legacy data into an XML format.

• Lookup tables and static data retrieved and stored in memory at runtime, by the

application.

Pros:

• If using proprietary database extensions, this architecture is relatively easy to

implement.

• Does not affect existing legacy data model.

Cons:

• When using proprietary database extensions, the degree to which this output format

can be utilized is limited to the features of the database product. Some databases

output unrefined (and sometimes cryptic) XML markup. These documents often

require further processing and filtering by the application. (See the “Database

extensions” section later in this chapter for more information.)

• Proprietary database extensions tie you to a database platform, and much of XML’s

mobility is lost.

7.2.4 Using XML to represent a view of a relational data model

In this architecture, XML documents are modeled to accurately represent portions of

the legacy data model (see Figure 7.6). This approach requires the most up-front design

work to properly map relational data structures to XML’s hierarchical format.

Suitable for:

• Applications requiring an accurate representation of select relational data entities.

• Applications that need to perform granular updates of legacy data hosted in XML

documents.

Pros:

• Establishes a highly flexible and mobile data transport mechanism that accompanies

data with a self-contained data model.

erl_ch07.fm Page 245 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

246 Chapter 7 • Integrating XML and databases

• RDBMS-comparable support for inserts and updates.

• Focus on XML parsing provides a comprehensive abstraction of RDBMS data access.

Cons:

• Complex to design and maintain.

• Sophisticated approach, but still does not remove the need to perform queries

against the database.

7.2.5 Using XML to represent relational data within an in-memory database (IMDB)

XML actually can be utilized to increase application performance by caching relational

data on the application server. This architecture can be combined with others, depend-

ing on how you want to represent and map the relational data bodies to XML docu-

ments, and whether you need to preserve inter-table relationships.

Once you’ve defined how XML is to represent your data, you can have a utility compo-

nent retrieve the information once, upon the start of an application, or periodically,

based on preset refresh intervals. As explained in Figure 7.7, this component can then

parse and load XML documents into a globally accessible memory space.

Figure 7.6

A physical architecture illustrating the use of a data map to represent

relational data within an XML document.

database serverapplication server

schema

XML
document

relational
data

schema

data map

erl_ch07.fm Page 246 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Strategies for integrating XML with relational databases 247

Suitable for:

• Applications with high-usage volumes.

• Relatively static data, such as lookup tables.

Pros:

• Shifts processing load from database to application server, which can dramatically

increase performance.

• Cost-effective method of scaling an application (memory is cheaper than database

licenses).

Cons:

• May introduce vertical scaling requirements.

• Although faster, the overall architecture is less robust (memory space is more

volatile and environmentally sensitive than a hard drive).

7.3 S trategies for integrating XML w ith relational databases

Section 7.4 is dedicated to data mapping, and provides numerous techniques for over-

coming the inherent differences between XML and relational data models. Before you

Figure 7.7

A physical architecture in which XML data is cached in memory.

IMDB memory space

database serverapplication server

XML
document

IMDB
component

schema

erl_ch07.fm Page 247 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

248 Chapter 7 • Integrating XML and databases

delve into the mysterious world of data maps, relationship pointers, and relational

hierarchies, here are more high-level integration strategies to keep in mind.

7.3.1 Target only the data you need

There is one simple design principle that you should take to heart: Whenever possible,

restrict application data to the context of the current business task. In other words, only

encapsulate the pieces of data and the parts of the data model relevant to the immedi-

ate application function.

There are two reasons this one design point is important:

Performance

K eeping the data model on the XML side of your architecture lean is a crucial step to

designing performance optimization into your application. It is very easy simply to

take the results of a query and stuff them into a generic or dynamically generated doc-

ument structure, especially when working with database extensions that already do

this for you.

Designing XML documents to represent too much data is a surprisingly common pit-

fall, which almost always results in eventual performance challenges. It’s more effort to

discern the parts of data you really need from those that can be discarded. The time you

invest in order to put together a proper document model design up-front is nothing

compared to the effort required to redesign and re-implement a new document model

once the application has been deployed. (See Chapter 5 for many XML document mod-

eling guidelines and standards.)

Tas k -oriented d ata rep res entation

Your legacy repository may not have been designed to accommodate your current

or future application tasks. Each task performed by an application represents a

business function that involves a subset of your corporate data within a unique

context.

SUMMARY OF KEY POINTS (Section 7.2)

• There is no one standard integration architecture for XML and relational databases.

• Architectures often will need to be designed around the features and limitations of the

proprietary database platform.

• The storage of XML documents may vary from the storage of schemas. Sometimes

XML documents are auto-generated, and need to be linked dynamically to existing

schema fi les.

erl_ch07.fm Page 248 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Strategies for integrating XML with relational databases 249

By the mere fact that your application architecture is already XML-enabled, you have

the opportunity to model your documents so that they can best represent only the

data relevant to the business task at hand. This means that you can custom-tailor

your data representation (while still preserving its validation and relational rules) to

establish a data view that relates to the requirements of the application function currently

being executed.

This moves into the area of object- or class-based data mapping, but we’ll call it task-

oriented data representation for now. All that I recommend is that you present the data

in such a way that it can easily be consumed and processed by the application, while

also being associated with a business task.

Task-oriented data representation also can improve application maintenance. Since

your data is uniquely identified with a specific business task, it can be more easily

traced and logged.

7.3.2 Avoiding relationships by creating specializ ed data views

If you are repeatedly working with the same sets of legacy data, you can save a great

deal of integration effort by pre-consolidating this information into a database view.

Instead of having to map to, extract, and assemble multiple tables every time, you can

simply map the one view of data to one or more XML documents.

Additionally, if your database provides XML support, and your column names are self-

descriptive, you can have the database auto-generate relatively optimized XML

markup, on demand.

Finally, you can supplement this approach by creating XSD schemas or DTDs in sup-

port of each view. Do this, however, only if you are certain that the views are fairly per-

manent. Also, note that views are often read-only. In this case, view-derived documents

would not be suitable for updates and inserts, as your data will not be accompanied by

the necessary data model rules.

7.3.3 Create XML-friendly database models

If you are in a position to build a brand new database, you can take a number of steps

to streamline the integration process with XML documents. Here are some suggestions.

Av oid g ranu lar tab les and relationsh ips
This isn’t to suggest that you should compromise the integrity of your data model, but

if you do have the choice between creating a series of larger tables and a multitude of

smaller joined tables, you will save yourself a great deal of mapping effort by cutting

down on inter-table relationships.

erl_ch07.fm Page 249 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

250 Chapter 7 • Integrating XML and databases

Support preformatted XML views
Consider adding tables to store for XML documents representing redundant views of

static legacy data. Y our database may provide support for automatically generating

and sy nch roniz ing th ese views, via th e use of stored procedures, triggers, or oth er

ex tensions.

C on sider desc riptive c olumn n ames
If y ou will be using proprietary XML ex tensions provided by y our database, y ou may

be subjected to auto-generated XML documents based entirely on y our ex isting D D L

sy ntax . B y h aving self-descriptive column names, y ou will end up with more self-

descriptive XML documents. Consider th is only if y ou actually need y our XML docu-

ments to contain descriptive element-ty pe names. R ead th rough th e section, “ N aming

element-ty pes: performance vs. legibility ,” in Ch apter 5 to learn more about th e impli-

cations of using self-descriptive element-ty pes.

Avoid c omposite k ey s
If y ou will be mapping y our data to D T D s, avoid composite k ey s. F or th e purpose of

mapping relationsh ips with in XML documents, it is preferable to uniq uely identify a

record by adding a primary k ey rath er th an by defi ning a k ey based on a combination

of multiple column values. If y ou are work ing with XS D sch emas, h owever, recreating

composite k ey s will be less of an issue.

7.3 .4 E x tending the sc hem a m o del w ith anno tatio ns

R egardless of th e sch ema tech nology y ou end up using, a h ierarch ical data representa-

tion can only refl ect th e complex ities of a relational data model to a certain ex tent. Y ou

often will fi nd y ourself compensating for gaps by writing application routines th at sup-

plement th e sch ema validation with custom data rules and processing.

A classic ex ample is th e enforcement of referential integrity . A relational database will

ty pically allow y ou to propagate and cascade updates or deletions to column values

involved in a relationsh ip. D eleting an invoice record, for instance, automatically will

delete all associated invoice detail records.

E ven th ough th is ty pe of rule enforcement will need to be processed by th e application,

it is often preferable for th ese rules to still ex ist with in th e sch ema fi le itself, as opposed

to residing independently in application components. T h is is wh ere sch ema annota-

tions are very useful.

B y creating a standard set of codes to represent common processing rules, y ou can

embed processing statements as comments or annotations with in each sch ema fi le.

E specially wh en using th e appinfo element in XS D sch emas, th ese annotations are

erl_ch07.fm Page 250 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Strategies for integrating XML with relational databases 251

easily parsed, retrieved, and processed by the application at runtime. (For more infor-

mation on annotating XSD schemas, refer to the “Supplementing XSD schema valida-

tion” section in Chapter 5.)

7.3.5 N on-XML data models in XML schemas

Continuing from the previous section, let’s take this technique a step further. If your

application environment consists of a mixture of data formats, you could place valida-

tion rules and processing instructions within your schema annotation that apply to

non-XML formatted data. In this case, a schema would typically be related to a busi-

ness task, and could then encompass the validation rules of any data involved in the

execution of that task, regardless of format.

By centralizing all data-related rules into one file, you retain the mobility and extensibil-

ity of the XML application model. By creating standards around the code syntax, you also

establish a loosely coupled relationship between the application and your data model.

7.3.6 D ev eloping a caching strategy

Retrieving and composing XML documents at runtime can be a processor-intensive

task, especially if you need to perform some form of dynamic linking. To minimize the

amount of times a particular body of application data is generated this way, develop a

caching strategy to hold an XML document in memory as long as possible.

The in-memory database architecture (as illustrated in the “U sing XML to represent

relational data within an in-memory database (IMDB)” section) demonstrates the per-

formance benefits of caching legacy data on the application server within XML docu-

ments. XML data is very well suited for storage in memory, and even if you don’t build

a formal architecture around the use of an IMDB, you should consider developing a

strategy for caching documents (or perhaps constructs) whenever possible.

Suitable types of data include:

• static report data

• lookup tables

• state and session information

• application configuration parameters

• processing instructions and validation rules

… and pretty much any other piece of (relatively static) information that will need to

be accessed throughout the lifetime of an application instance. Note that security

erl_ch07.fm Page 251 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

252 Chapter 7 • Integrating XML and databases

requirements and memory limitations may restrict the type and amount of data you

can place in memory.

7.3.7 Q u erying the XSD schema

W hen working with XSD schemas, the data model established by the schema is open to

be queried and parsed, as any other XML document. This gives developers a standard

AP I into the structure, constraints, and validation characteristics of any piece XML for-

matted data (see Figure 7 .8).

By querying schema files at runtime, applications can dynamically retrieve the data

model. This facilitates the development of highly intelligent and adaptive application

components that can respond to changes in auto-generated schema files.

7.3.8 Control XML ou tpu t with XSLT

O ne of the limitations of any hierarchy is that the order in which items are structured is

generally fixed. If you are mapping table columns to elements or attributes within your

F ig u r e 7 .8

A pplication components can q u ery the XSD schema file as they wou ld any other XML docu ment.

NO T E

If you have an XML processing library that su pports a schema object model,

you can also interface with an XSD schema programmatically. T his wou ld

allow you to modify or even generate schema data models dynamically.

 XSD schema

XML
DO M

what is the
data type of

this element?

what are the
constraints for
this element?

what are the
dependencies

of this element?

give me all of
the req u ired

elements

what the heck ,
ju st give me the

whole data model

erl_ch07.fm Page 252 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Strategies for integrating XML with relational databases 253

XML document, you may be limited to the sequence in which these elements or

attributes are declared within your schema.

XSLT can provide a convenient way to:

• alter the document structure

• change the sorting order (as in Figure 7.9)

• introduce a series of logical element groups

By dynamically creating structure-oriented XSLT style sheets and associating them

with your newly populated XML documents, you can build a flexible data manipula-

tion system that can accommodate a number of different output formats from the same

data source.

7.3.9 Integrate XML with query limitations in mind

It’s no secret that querying XML documents can be a slow and inefficient means of data

retrieval. Where RDBMSs have indices they can utilize for nearly instant access to key

pieces of data, XML parsers are forced to iterate through the document nodes in order

to locate the requested information.

It is therefore preferable to have the database do as much of the querying prior to sub-

sequent application processing of the data. If you are considering preserving relation-

ships and other aspects of your relational data within XML documents, then try to

incorporate specialized views that pre-query the data you want to represent.

If you are unsure of how data will be queried once it is returned to the application, try

to model your XML documents into granular sections that can be searched faster.

Figure 7.9

The structure of an XML document is transformed to represent

different sort orders.

XML
document

XSLT
style sheet

A-Z

Z -A

erl_ch07.fm Page 253 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

254 Chapter 7 • Integrating XML and databases

7.3.1 0 Is a text fi le a legitimate repository?

After establishing the limitations of XML documents as a storage medium for corporate

data, is there a point in ever considering XML documents as a valid repository? The

answer is “yes, but only to a limited extent.”

XML never aspired to replace the data storage capabilities of traditional databases.

When XML was originally conceived, it was intended to host document-centric Web

content in a structured manner, supplemented by descriptive and contextual meta

information. Within an application architecture, its strength is providing a highly flexi-

ble and mobile data representation technology that can be applied in many different

ways throughout a technical environment.

There are a number of situations when it may be appropriate to persist XML docu-

ments as physical files, including:

• static report data

• lookup tables

• state and session information

• application configuration parameters

• processing instructions and validation rules

If this list looks familiar, it’s because it’s identical to the list of data recommended for

use with an IMDB. Although you may not necessarily need to load all of the data kept

in physical XML documents into memory (or vice versa), the general rules apply for

each approach, because your data is being hosted on the application server either way.

One additional item that can be added to this list is a configuration file in support of

IMDBs, in which refresh-and-upload intervals are stored.

7.3.1 1 Loose coupling and developer skill sets

One of the often-overlooked benefits of abstracting data access from the database to

XML is that developers no longer need to concern themselves (as much) with vendor-

specific data access technology.

Once you’ve built an integration architecture that accomplishes a high level of indepen-

dence from platform-specific technologies, you will create an environment where

developers can concentrate on the management and manipulation of data with only the

XML technology set. Web services can play a key role in achieving this level of platform

detachment. (Read Chapter 9 for more information.)

erl_ch07.fm Page 254 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Techniques for mapping XML to relational data 255

7.4 T ec h n iq ues fo r m a p p in g X M L to rela tio n a l d a ta

Perhaps the most challenging and awkward part of integrating relational databases

with XML documents is trying to recreate relationships between database tables within

the hierarchical model of XML documents.

Especially when trying to integrate complex and extensive data models, it will often

feel like you’re forcing a round peg into a square hole (many times over). Well, life isn’t

always easy, and integration projects are no exception. The point — there’s a hole,

there’s a peg, let’s grab that hammer and deal with it.

7.4.1 Mapping XML documents to relational data

To integrate a relational data model with XML, some form of data map generally will

be required. This map will associate the relevant parts of your legacy data model with

the corresponding parts of your XML schema.

There are several tools that can assist this process, some of which even auto-generate the

XML schema files for you. You will find, however, that more often than not, an accurate

mapping requires hands-on attention and manual changes to the schema markup.

There are several approaches to mapping data, depending on the nature of your data

model and the design of your application components. H ere are some guidelines for

devising a mapping strategy.

Tab le-b ased mapping

Mapping tables to parent elements within XML documents is the most common

approach. Depending on the nature of the data, columns can be represented as child

elements or attributes to the parent record elements.

Template-b ased mapping

This is a popular alternative, supported by several middleware products. The

design provides an effective means of generating XML formatted data, by embed-

ding SQ L statements in “hollowed” XML document templates. These statements

SU MMAR Y OF K EY P OINTS

• P erformance is, as always, an important consideration when integrating and modeling

XML data representation. Caching is a key strategy to overcoming potential bottlenecks.

• Since relational databases are typically an established part of a legacy application

environment, most of the integration focus is on designing XML documents around the

existing relational data model. R elational databases, however, can also be “adjusted” to

contribute to an improved integration.

erl_ch07.fm Page 255 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

256 Chapter 7 • Integrating XML and databases

then are processed by the product at runtime, the database is queried, and the docu-

ment is populated dynamically.

Class-based mapping
A less frequently used approach, class- or object-based mapping may become more

common once Web services establish themselves as a standard part of application

architecture. The format of a class-based XML document allows data to be mapped

according to class objects and their attributes or method parameters.

7.4.2 The B ear Sightings application

Throughout section 7.4 we will be referencing a simple data model (Figure 7.1 0) for an

application used to keep track of bears that roam into mining camps in the Yukon. This

is a common problem with placer mines located in remote areas of the wilderness, and

the information gathered by such an application can assist in broadcasting alerts to

camp sites, especially if bears exhibiting dangerous behavior are encountered.

7.4.3 Intrinsic one-to-one and one-to-many relationships with XML

The hierarchical XML document structure provides natural one-to-one and one-to-

many relationships, where single or multiple instances of a child element can be nested

Figure 7.10

The application data model of the B ear Sightings database consists of two

simple, related tables.

B ear Sightings Database

one

many

MiningCamp

ID
Company
Region

B ear

Species
Cubs
Nickname
ThreatLevel
CampID

erl_ch07.fm Page 256 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Techniques for mapping XML to relational data 257

within one parent element. As long as the child element requires only a single parent

element, you need to do nothing more than define this parent-child hierarchy as you

would any other.

Any schema you use should be able to easily enforce a one-to-one relationship. DTDs

enable this via the “?” symbol (or the absence of a symbol) within the element declara-

tion, and XSD schemas use the maxOccurs attribute.

The example in Figure 7.11 illustrates an element-centric one-to-many relationship,

where table columns are represented as child elements. Columns of the MiningCamp

table are mapped to child elements of the MiningCamp element, and columns of the

Bear table are mapped to child elements of the Bear element. Figure 7.12 shows the

same data represented in an attribute-centric model.

The point at which this intrinsic relationship becomes insufficient is when you need to

represent a child element that requires more than one parent element in the same docu-

ment. That’s when it’s time to roll up your sleeves and delve into the world of DTD or

XSD schema pointers. The following two sections will show you how.

Figure 7.11

An intrinsic one-to-many relationship established within an element-centric XML document

instance.

< BearSightings>
< MiningCamp>

< Company> YukonG oldMining.com< /Company>
< Region> H ighet Creek< /Region>

< Bear>
< Species> Black< /Species>
< Cubs> 2< /Cubs>
< Nickname> Cub Scout< /Nickname>
< ThreatLevel> 6< /ThreatLevel>

< /Bear>
< Bear>
< Species> G riz z ly< /Species>
< Nickname> Beartuz z i< /Nickname>
< ThreatLevel> 9< /ThreatLevel>

< /Bear>

< /MiningCamp>
< /BearSightings>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 257 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

258 Chapter 7 • Integrating XML and databases

7.4.4 Mapping XML to relational data with DTDs

Provided here are techniques to accomplish rudimentary relational functionality within

DTDs.

Basic table mapping with DTDs

Put simply, you can map tables to individual DTDs, or group tables logically into one

DTD. A deciding factor is whether or not you also intend to represent relationships

between tables. If you do, all tables involved in a relationship will need to be contained

within one DTD schema.

As the next few sections thoroughly explore, DTDs generally rely on a series of

attributes that simulate pointers, and those pointers apply only within the boundary of

an XML document.

Let’s begin by revisiting our previous data model, and associating it with a basic DTD.

Figure 7.12

An intrinsic one-to-many relationship established within an attribute-centric XML document

instance.

NOTE

XSD schemas provide more advanced relationship mapping features, as

described in the “Mapping XML to relational data with XSD schemas” section.

<BearSightings>
<MiningCamp Company= "YukonGold...

 <Bear Species= "Black" Cubs= "2"…
 <Bear Species= "Grizzly" Nickname= …

</MiningCamp>
</BearSightings>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 258 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Techniques for mapping XML to relational data 259

As the example in Figure 7.13 demonstrates, the one-to-many relationship is estab-

lished by the nesting of the Bear element. The asterisk symbol in the MiningCamp ele-

ment is used to enable multiple occurrences of the Bear child element.

Data type restrictions with DTDs
A significant limitation to representing a relational data model within a DTD is the

inability of DTD schemas to type data properly. The DTD language supports only four

types of data: ANY, EMPTY, PCDATA, and element-only content.

Most of the time you will find yourself lumping your database columns into elements

that are of type PCDATA. This places the burden of figuring out the nature of your data

on the application.

Figure 7.13

A DTD containing a parent element for each table.

NOTE

If you are not mapping relationships, you have the fl exibility to control the

granularity of your DTDs and their corresponding XML documents. This will

allow you to accommodate application performance requirements. High data

volumes and complex document structures can justify distributing a relational

model across multiple document types.

<!ELEMENT BearSightings (MiningCamp+)>
<!ELEMENT MiningCamp

(Company, Region, Bear*)>

<!ELEMENT Company (# PCDATA)>
<!ELEMENT Region (# PCDATA)>

<!ELEMENT Bear
(Species, Cubs?,
 Nickname, ThreatLevel)>

<!ELEMENT Species (# PCDATA)>
<!ELEMENT Cubs (# PCDATA)>
<!ELEMENT Nickname (# PCDATA)>
<!ELEMENT ThreatLevel (# PCDATA)>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 259 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

260 Chapter 7 • Integrating XML and databases

One method of countering this limitation is to annotate the DTD with data type infor-

mation for each element. Alternatively, you can add custom attributes to elements that

identify the native database data types, as demonstrated here.

 <ThreatLevel DataType="integer">9</ThreatLevel>

E x ample 7.1 An element instance with a custom attribute identifying the original data type

The problem with these types of workarounds is that they introduce a non-standard

solution to a common problem. Outside of applications that are aware of the purpose

behind the custom attributes, this solution is not useful.

Null restrictions with DTDs

DTDs have no concept of null values, which can turn into another challenge when

wanting to accurately represent the data values found in databases. Since at least some

of your database tables will likely allow and contain null values, you need to establish a

way of expressing them within your DTD schemas.

Here are some suggestions:

• Nulls can be represented by an absence of a child element or attribute. Essentially, if

the element or attribute is present and empty, it is displaying an empty value. If the

element or attribute is not included in an instance of the parent element, then that

indicates a null value.

• The value of null can be represented by a keyword. You can create a standard code,

say “NULL,” that your application can look for and interpret as a null value, as

shown in this example.

 <ThreatLevel>NULL</ThreatLevel>

E x ample 7.2 An element instance indicating a null value through the use of a pre-assigned code

As with using custom attributes to represent non-DTD supported data types, these

solutions are non-standard. If your application will need to interoperate with others,

the implemented method of null value management will not be evident, and may very

well be ignored.

R epresenting relational tables with DTDs

Using the ID, IDREF, and IDREFS attributes provided by the XML specification (and

further explained in subsequent sections), DTDs can define and enforce the uniqueness

of an element, as well as constraints between elements.

erl_ch07.fm Page 260 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Techniques for mapping XML to relational data 261

If database tables are represented as separate XML constructs within an XML docu-

ment, DTDs can simulate basic inter-table relationships, as well as the use of primary

and foreign keys. When using DTDs for this purpose, however, you are restricted to

representing database tables involved in relationships within one XML document.

Primary keys with DTDs
The XML specification provides the ID attribute to allow unique identifiers to be

assigned to XML elements. This can be useful to the application parsing the XML docu-

ment, because it can search for and identify elements based on this value.

In the following example, we declare an attribute of type ID and also call it “id” (we

could just as easily call it “ReferenceID” or “MiningCampID”).

 <!ELEMENT MiningCamp (Company, Region, Bear*)>

 <!ATTLIST MiningCamp id ID #REQUIRED>

Example 7.3 An element type declaration with an ID attribute

For the purpose of establishing relationships, the ID attribute can simulate a primary

key for an element construct that represents a database table.

There are two major limitations when using the ID attribute:

• The attribute value cannot begin with a number. Since database tables frequently

use incrementing numeric values for keyed columns, you will often need to

programmatically modify this data before placing it into the ID attribute.

• ID values need to be unique within the entire XML document, regardless of element

type. Since you are restricted to representing all the tables involved in a relationship

within the scope of one XML document, you may run into ID value collisions.

(Incidentally, this makes the ID attribute useful as an element index value.)

The easiest way to solve both of these issues is to prefix your key values with a code

that relates the ID value to its associated table.

For instance, imagine you are representing both Invoice and PO tables within one doc-

ument. In your database, each table’s primary key is a column called “Number,” which

uniquely identifies a record. An Invoice record that has a Number value of 1001 and a

NOTE

In order to achieve cross-document relationships you may need to consider

using XLink and XPointer. W ith these supplementary technologies, the ID

attribute can still be used to identify the element being referenced.

erl_ch07.fm Page 261 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

262 Chapter 7 • Integrating XML and databases

PO record that also has a Number value of 1001 are legitimate within a database, how-

ever they are not within a DTD-validated XML document.

To incorporate Invoice and PO Number keys as ID attributes within an XML docu-

ment, these values could instead be represented as “INV 1001” and “PO1001.” This is

obviously not an accurate representation of table data, but it does achieve the function-

ality required to simulate primary keys (to an extent).

For the purpose of our example, we are prefixing the MiningCamp table’s numeric ID

values with the word “Camp.” Our sample mining camp therefore has an ID value of

“Camp1.”

 <MiningCamp ID="Camp1">

Example 7.4 A primary key represented by the ID attribute

Foreign keys with DTDs

The XML specification enables cross-element referencing of the ID attribute by provid-

ing the IDREF and IDREFS attributes. An element can assign the ID value of another

element to its IDREF attribute, thereby establishing a relationship between the two,

similar to the relationship between a primary key and a foreign key within a database.

 <!ELEMENT Bear (Species, Cubs?, Nickname, ThreatLevel)>

 <!ATTLIST Bear CampID IDREF #REQUIRED>

Example 7.5 An element type declaration containing a foreign key reference

The IDREFS attribute is identical to IDREF, except that it allows you to reference multi-

ple ID values. One element, therefore, can have references to multiple others.

Since XML documents typically represent a portion of a database’s relational model,

they will often evolve. If the scope of your application grows, you may find your

DTD expanding as well, as it needs to represent more relationship information. You

can therefore use the IDREFS attribute, even if you are referencing only one value

initially. This way you can add references as required without changing the original

element definition.

NOTE

The XML schema language also suppor ts attributes of type IDREF and

IDREFS. However, since XSD schemas introduce more sophisticated ways

of establishing relationships between elements, these attributes are rarely

used. The subsequent section in this chapter is dedicated to relationship

mapping with XSD schemas.

erl_ch07.fm Page 262 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Techniques for mapping XML to relational data 263

Relationships with DTDs
The pointing mechanism established in the previous sections (using the ID, IDREF, and

IDREFS attributes) provides you with the ability to set up a series of sequential element

constructs within a DTD. This allows you to identify how these elements relate, and

enables you to simulate various database table relationships. All of this can lead to the

creation of a relatively normalized DTD schema.

The intrinsic one-to-many relationship illustrated in the “Intrinsic one-to-one and one-

to-many relationships with XML” section can be recreated using DTD pointers, as illus-

trated in Figures 7.14 and 7.15.

This example may be interesting, but it’s not really that useful. We have not gained any-

thing over representing the one-to-many relationship without the use of pointers. The

real power of DTD pointers is realized when you have a set of child elements that are

required to relate to multiple parent elements.

In the example provided in Figure 7.16 the Bear elements are not explicitly nested

within the parent MiningCamp element. Instead, they exist as separate constructs and

Figure 7.14

A one-to-many relationship using ID and IDREF.

primary key

foreign key

<BearSightings>
<MiningCamp id="Camp1">

<Company>YukonGoldMining.com</Company>
<Region>Highet Creek</Region>

<Bear CampID ="Camp1">
<Species>Black</Species>
<Cubs>2</Cubs>
<Nickname>Cub Scout</Nickname>
<ThreatLevel>6</ThreatLevel>

</Bear>
<Bear CampID="Camp1">
<Species>Grizzly</Species>
<Nickname>Beartuzzi</Nickname>
<ThreatLevel>9</ThreatLevel>

</Bear>

</MiningCamp>
</BearSightings>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 263 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

264 Chapter 7 • Integrating XML and databases

reference the corresponding ID attribute (the primary key of the MiningCamp table),

using their own IDREF attribute (which acts as the foreign key of the Bear table).

Figure 7.17 provides the corresponding DTD.

When defining a one-to-one relationship, ensure that the declaration syntax allows a

maximum of one instance of the child element within the parent element construct. This

is accomplished by using the “?” symbol in the declaration statement, as shown here.

<!ELEMENT Bear (Cubs?)>

Example 7.6 An element type declaration restricting a child element to zero or one

occurrence

Alternatively, you can also establish a one-to-one relationship by embedding the col-

umn values of the database record into the element as a series of attributes.

Referential integrity restrictions within DTDs

When using IDREF and IDREFS, a DTD cannot enforce an erroneous occurrence of

these attributes. For instance, let’s say an element representing a Country Code lookup

table contains an IDREF value that corresponds to a valid Invoice ID value, like

Figure 7.15

A DTD establishing ID and IDREF attributes.

<!ELEMENT BearSightings (MiningCamp+)>
<!ELEMENT MiningCamp

(Company, Region, Bear*)>
<!ATTLIST MiningCamp id ID #REQUIRED>

<!ELEMENT Company (#PCDATA)>
<!ELEMENT Region (#PCDATA)>

<!ELEMENT Bear
(Species, Cubs?, Nickname, ThreatLevel)>

<!ATTLIST Bear CampID IDREF #REQUIRED >

<!ELEMENT Species (#PCDATA)>
<!ELEMENT Cubs (#PCDATA)>
<!ELEMENT Nickname (#PCDATA)>
<!ELEMENT ThreatLevel (#PCDATA)>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

primary key

foreign key

erl_ch07.fm Page 264 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Techniques for mapping XML to relational data 265

“INV1001.” In databases we can set up constraints to enforce foreign key relationships

between two tables. If no such relationship exists between the Invoice table and the

Country Code table, the Country Code table cannot reference a primary key value from

the Invoice table.

In an XML document, however, the DTD has no concept of explicit relationships

between two types. It simply keeps track of ID and IDREF/IDREFS attributes, and

makes sure that all IDREF and IDREFS values consist of valid ID values somewhere in

the document. It doesn’t matter where the IDREF or IDREFS values are located, as long

as they are present and the value is unique.

It is therefore important to understand that DTDs cannot provide true referential integ-

rity. DTDs allow for a system of pointers that can be utilized to simulate database table

relationships to a limited extent.

7.4.5 Mapping XML to relational data with XSD schemas

The XML schema language provides a number of features that are very useful for rep-

resenting relational data. One notable difference in how XSD schemas approach the

Figure 7.16

A different one-to-many relationship using ID and IDREF.

primary key

foreign key

<BearSightings>

<MiningCamp id="Camp1">

</MiningCamp>

<Company>YukonGoldMining.com</Company>
<Region>Highet Creek</Region>

<Bear CampID ="Camp1">
<Species>Black</Species>
<Cubs>2</Cubs>
<Nickname>Cub Scout</Nickname>
<ThreatLevel>6</ThreatLevel>

</Bear>

<Bear CampID="Camp1">
<Species>Grizzly</Species>
<Nickname>Beartuzzi</Nickname>
<ThreatLevel>9</ThreatLevel>

</Bear>

</BearSightings>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 265 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

266 Chapter 7 • Integrating XML and databases

definition of keys, is that they incorporate XPath statements to address the shortcom-

ings of DTDs we just discussed.

Although XSD schemas do still support the ID, IDREF and IDREFS attributes dis-

cussed in the previous section, here we focus on the parts of the XML Schema language

that were added specifically to address relational data mapping requirements.

Basic table mapping with XSD schemas
When mapping database tables to XSD schemas, you generally represent tables as ele-

ments with complex types, where each column exists as a simple type element (or as a

nested complex type element, when required).

 <element name="Bear">

 <complexType>

 <attribute name="Species" type="string" />

 <attribute name="Nickname" type="string" />

 <attribute name="ThreatLevel" type="integer" />

 </complexType>

 </element>

Example 7.7 An element declaration representing three columns from a relational table

Figure 7.17

DTD providing ID and IDREFS attributes.

primary key

foreign key

<!ELEMENT BearSightings
(MiningCamp+, Bear*)>

<!ELEMENT MiningCamp
(Company, Region)>

<!ATTLIST MiningCamp id ID #REQUIRED>

<!ELEMENT Company (#PCDATA)>
<!ELEMENT Region (#PCDATA)>

<!ELEMENT Bear
(Species, Cubs?, Nickname, ThreatLevel)>

<!ATTLIST Bear CampID IDREFS #REQUIRED>

<!ELEMENT Species (#PCDATA)>
<!ELEMENT Nickname (#PCDATA)>
<!ELEMENT Cubs (#PCDATA)>
<!ELEMENT ThreatLevel (#PCDATA)>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 266 Tuesday, February 8, 2005 9:32 PM

by Thomas Erl. For more information visit www.serviceoriented.ws.

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"

Techniques for mapping XML to relational data 267

Null restrictions with XSD schemas
Even though the XML schema language supports the null value, it does so only for ele-

ments. Attributes cannot contain nulls, and therefore any table column to which you

map an attribute should not allow nulls to avoid validation conflicts.

Primary keys with XSD schemas
Elements within XSD schemas can be exclusively identified using the unique element.

Similar in nature to the ID attribute, this element provides more flexibility, and uses

XPath to define the scope of its uniqueness.

 <unique name="MiningCampID">

 <selector xpath=".//MiningCamp" />

 <field xpath="PrimaryKey" />

 </unique>

Example 7.8 The XSD schema unique element

For the purpose of representing relational data, however, the key element is more suit-

able. As with unique, the key element enforces a level of uniqueness among the ele-

ments or attributes returned by an XPath statement.

 <key name="MiningCampPrimaryKey">

 <selector xpath=".//MiningCamp" />

 <field xpath="PrimaryKey" />

 </key>

Example 7.9 The XSD schema key element

The key element is specifically intended to be referenced by the keyref element. This

establishes a primary-to-foreign key relationship.

Foreign keys with XSD schemas
Elements that need to reference other elements can use keyref. This element defines a

foreign key that points to a primary key, based on the key element just explained.

NOTE

If you really do need to map a null-allowed column to an attribute, refer to the

“Null restrictions with DTDs” section for customized null value management

techniques that can also be applied to XSD schemas.

NOTE

Unlike the ID attribute in DTDs, key element values can be numeric.

erl_ch07.fm Page 267 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

268 Chapter 7 • Integrating XML and databases

 <keyref name="MiningCampForeignKey" refer="x:MiningCampPrimaryKey">

 <selector xpath=".//Bear" />

 <field xpath="ForeignKey" />

 </keyref>

Example 7.10 The XSD schema keyref element

As with the unique and key elements, keyref relies on XPath statements to define

the region of an XML document to which it applies.

Composite keys with XSD schemas
Databases allow for the creation of composite keys, which derive the key value from a

combination of table columns. As long as that combination is unique throughout the

table, the key is valid.

XSD schemas provide the same functionality. Whether declaring unique, key, or key-

ref elements, you can define multiple elements or attributes by adding a field ele-

ment for each.

 <key name="BearKey">

 <selector xpath=".//Bear" />

 <field xpath="Nickname" />

 <field xpath="Species" />

 </key>

Example 7.11 A composite key created by multiple field elements

Note that composite keys can consist of elements with different data types.

Relationships with XSD schemas
Intrinsic one-to-one and one-to-many relationships are adequate for when child ele-

ments have only one parent. For a more flexible schema that allows an element to be

referenced by multiple others, you will need to use the key and keyref elements

explained in the previous sections.

By establishing the primary key of your child element with a key value, you will be

able to add a corresponding keyref element to each parent that needs to reference it.

You can set the maxOccurs indicator to control how many instances of the child ele-

ment you want to allow.

Figure 7.18 provides an example that demonstrates an XSD schema-based constraint.

Note that we have named the elements representing table keys “PrimaryK ey” and

“ForeignK ey,” respectively.

Next are the contents of the corresponding XSD schema file, followed by the diagram in

Figure 7.19 that illustrates the relationship between the schema and table keys.

erl_ch07.fm Page 268 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Techniques for mapping XML to relational data 269

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

 <xs:element name="BearSightings">

 <xs:complexType>

 <xs:choice maxOccurs="unbounded">

 <xs:element name="MiningCamp">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PrimaryKey" type="xs:string" minOccurs="1" />

 <xs:element name="Company" type="xs:string" />

 <xs:element name="Region" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Bear">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ForeignKey" type="xs:string" minOccurs="0" />

 <xs:element name="Species" type="xs:string" />

Figure 7.18

A document instance with a one-to-many relationship enforced by an XSD schema.

primary key

foreign key

<BearSightings xmlns="http://www.w3.org/...

<MiningCamp>
<PrimaryKey>Camp1</PrimaryKey>
<Company>YukonGoldMining.com</Company>
<Region>Highet Creek</Region>

</MiningCamp>

<Bear>
<ForeignKey>Camp1</ForeignKey>
<Species>Black</Species>
<Nickname>Cub Scout</Nickname>
<Cubs>2</Cubs>
<ThreatLevel>6</ThreatLevel>

</Bear>

<Bear>
<ForeignKey>Camp1</ForeignKey>
<Species>Grizzly</Species>
<Nickname>Beartuzzi</Nickname>
<ThreatLevel>9</ThreatLevel>

</Bear>

</BearSightings>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 269 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

270 Chapter 7 • Integrating XML and databases

 <xs:element name="Nickname" type="xs:string" />

 <xs:element name="Cubs" type="xs:integer" minOccurs="0" />

 <xs:element name="ThreatLevel" type="xs:integer" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 <xs:key name="MiningCampPrimaryKey">

 <xs:selector xpath=".//MiningCamp" />

 <xs:field xpath="PrimaryKey" />

 </xs:key>

 <xs:keyref name="MiningCampForeignKey" refer="MiningCampPrimaryKey">

 <xs:selector xpath=".//Bear" />

 <xs:field xpath="ForeignKey" />

 </xs:keyref>

 </xs:element>

</xs:schema>

Example 7.12 An XSD schema enforcing constraints with key and keyref

Figure 7.19

A one-to-many relationship using key and keyref.

primary key

foreign key

<xs:key name="MiningCampPrimaryKey">
<xs:selector xpath=".//MiningCamp" />
<xs:field xpath="PrimaryKey" />

</xs:key>

<xs:keyref name="MiningCampForeignKey"
 refer="MiningCampPrimaryKey">

<xs:selector xpath=".//Bear" />
<xs:field xpath="ForeignKey" />

</xs:keyref>

one

many

MiningCamp

ID
Company
Region

Bear

Species
Cubs
Nickname
ThreatLevel
CampID

one

many

erl_ch07.fm Page 270 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Database extensions 271

As with the one-to-many relationship, you can easily define a one-to-one relationship

by creating a parent-child association between two element declarations within the

schema. The one-to-one relationship can be enforced by setting the maxOccurs indica-

tor to “1” on the child element declaration.

For one-to-one relationships where the child element will have multiple parents, you

can use the key and keyref elements as you would in a one-to-many relationship.

7.5 D atab ase extensions

Chances are, one of the first places you’ll look for XML integration features is to your

existing database. IBM, Microsoft, Oracle, and just about every other major database

vendor are providing some level of XML support. Very few, however, have made any

attempt to make these new features anything more than proprietary enhancements that

further tie you to their platform.

This is not to say that your database’s XML features are not useful or should not be

used. It is just important to integrate proprietary extensions with an awareness of how

they may limit you in the future.

Following are some common ways in which database products extend their data access

to XML.

7.5.1 Proprietary extensions to SQL

Some database vendors simply add XML-specific commands to their version of

SQL. An SQL query, for instance, can be formulated with an extra parameter indi-

cating that the query output should be an XML document, instead of the traditional

result-set format.

Embedding proprietary SQL statements into your application code will likely make

your application no less independent than it was before. However, you will be missing

out on one of the fundamental benefits of an XML-enabled environment: an abstraction

SUMMARY OF KEY POINTS

• XML provides natural (intrinsic) one-to-many and one-to-one relationships through its

hierarchical nesting structure.

• DTDs can supply basic data mapping functionality by simulating primary keys, foreign

keys, and various relationships.

• XSD schemas are equipped with more sophisticated features designed specifically for

relational data mapping requirements.

erl_ch07.fm Page 271 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

272 Chapter 7 • Integrating XML and databases

of data access. Keeping the XML aspect of your application architecture generic estab-

lishes a foundation for many interoperability opportunities.

Encapsulating proprietary extensions in a separate component layer or within a Web

service can protect your application from becoming too dependent on the database

platform. (Chapter 9 is dedicated to exploring the use of Web services within numerous

legacy architecture models.)

7.5.2 Proprietary versions of XML specifications

Database vendors that create proprietary versions of XML specifications tend to be

pretty up-front about it. Even to the extent of creating new acronyms for their

unique implementations. Building on vendor-driven standards may be a better solu-

tion than providing non-XML-based extensions altogether, but it will still tie you to

a product platform.

7.5.3 Proprietary XML-to-database mapping

Some databases provide data mapping facilities that allow you to associate XML docu-

ments to existing relational data models. Data maps can be generated through either a

front-end tool or a programmatic API.

Regardless of how they are accessed, proprietary data maps will restrict you to the

interface of the tool or API, which can often be quite limited. Additionally, a common

problem here is that the map itself is stored in a proprietary format. This creates further

dependencies between your architecture and a single database platform.

It is much more desirable for a mapping tool to generate its output into XML standard

syntax, such as XSD schema and XSLT files. This will allow you to migrate the data

maps to another product, and also gives you the freedom of editing them yourself.

7.5.4 XML output format

One of the biggest complaints relating to XML support in current databases is the for-

mat and syntax of the XML markup generated by the database extensions. Quite often,

the document structure will be based on the existing relational model, resulting in cre-

atively awkward hierarchies. Also, carrying database column names forward to XML

elements can lead to cryptic naming conventions. Add to that a slew of proprietary

markup and annotated commands that some products also insert, and you may be

hard-pressed to recognize what you requested as even being XML anymore.

Some database vendors mitigate this problem by giving the developer the option of

supplying parameters to predetermine the naming of elements and the overall format

erl_ch07.fm Page 272 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Database extensions 273

of the requested XML document. For instance, you may be able to tell the database to

output a query as an element-centric document, as opposed to one that is attribute-cen-

tric. This gives you more control, but it can also impose a great deal of runtime process-

ing, directly proportional to the size and complexity of the document you are building.

The best way to assess whether a database’s XML output will do more harm than good,

is simply to execute a range of commands and study the markup that gets returned.

Keep in mind that databases are performing this translation at runtime, so if the output

is only marginally useful, it may not be worth the processing cycles it is consuming.

You may very well be better off writing a custom routine to create exactly the output

you want.

7.5.5 Stored procedures

If you read the technical documentation carefully enough, you might notice that a signifi-

cant amount of a database’s XML support may be occurring through the use of stored

procedures. Database vendors simply have added a set of system stored procedures to

perform the runtime manipulation of data between XML and the native data format.

From the vendor’s perspective, this approach makes a lot of sense. They are simply

building on their existing platform, and by adding features with new stored proce-

dures, they are not required to make major changes to their existing database software.

Again, though, this design may have implications in terms of your architecture’s

dependence on a vendor-specific technology.

7.5.6 Importing and exporting XML documents

Most XML extensions provided by database vendors focus on the translation of XML to

and from existing relational data. Some provide utilities for importing and exporting

XML documents as a whole. There is less emphasis on this aspect, as it is moving the

database into the realm of content management, an uncomfortable place for many rela-

tional databases.

Regardless of whether the database product actually provides extensions to explicitly

store and retrieve XML documents, you can always alter the data model yourself to add a

character or LOB (Large Object) typed column that can contain the document text.

The key issue here is that, though most databases provide full-text searching capabili-

ties, very few actually support XML-aware querying. XML tags are considered part the

data, and will therefore be included in the results of full-text searches. Traditional rela-

tional repositories can adequately store XML documents only for retrieval, as long as

the querying of the document is performed by the application.

erl_ch07.fm Page 273 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

274 Chapter 7 • Integrating XML and databases

7.5.7 Encapsulating proprietary database extensions within Web services

All the issues raised in the previous section build a case for avoiding proprietary data-

base extensions altogether. Instead, it supports the idea of building your own interface

to repositories, and using only those extensions that allow for a loose coupling between

application and data source.

This is an area where Web services fits in nicely. A service-oriented architecture can intro-

duce an interoperability layer that achieves platform independence and mobility by

encapsulating any code required to interact with proprietary database extensions. (Read

Chapters 6 and 9 to learn more about how Web services can facilitate data abstraction.)

7.6 N ativ e XML databases

Even in XML-centric environments, many organizations continue to rely exclusively on

the well-established relational database platforms that have seen them through a num-

ber of changes in architecture and development technology. When moving your appli-

cations to XML-compliant and service-oriented architectures, you will find the

relational data model to still be very much a part of your core data access technologies.

There is, however, a place for native XML databases. An understanding of what these

products can offer will allow you to place them strategically within your environment.

This can lead to a number of improvements, foremost of which are performance and

protection of data integrity. Next is an exploration of how and where native XML data-

bases can be utilized.

7.6.1 Storage of document-centric data

This is where native XML databases can immediately impact an organization. If you’ve

standardized a body of documents using XML, you will need a storage and retrieval

SUMMARY OF KEY POINTS

• Extensions to your existing database that provide XML support are tempting, because

they provide a convenient way to get a limited amount of XML output from existing

relational data.

• Since most extensions are highly proprietary, they will further tie your application to a

specific database platform, potentially nullifying the mobility benefits of an XML

architecture.

• Web Services can provide a suitable abstraction layer, by encapsulating application

code to interact with proprietary extensions. The result is a data platform-independent

application core.

erl_ch07.fm Page 274 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Native XML databases 275

system that can handle the unique characteristics of the XML data format. In fact, a

number of content management products that use XML as the underlying document

format, also utilize native XML databases for storage.

Native XML databases are designed to accommodate and properly manage an XML

document structure independently from its content. This is an area where relational

databases often fail. Being able to differentiate the actual data from markup (that can

include processing instructions and entity references) is beyond the ability of typical

relational database platforms. For data-centric XML documents, however, relational

databases that have been extended with XML support are still the way to go.

7.6.2 Integrated XML schema models

In some of the architectures explored earlier in this chapter, we placed schema files in

relational repositories as entire documents or construct fragments. This is an extremely

loose form of integration. The database is not aware of the schema content, and there-

fore views these schema models as any other piece of textual data.

Some relational databases do provide conversion features and other extensions that

support a level of DTD or XSD schema integration. Few, however, come close to the

depth at which a native XML database represents and manages XML schema models.

Not only are XML schemas used to validate the integrity of data, the native database

can actually build an index around the schema structure itself.

7.6.3 Queries and data retrieval

Here’s where some analysis can result in significant performance improvements.

Native XML databases index content differently from their relational counterparts. This

relates back to their respective data structures: the tree/node hierarchy versus open,

tabular data entities. When working with documents, as opposed to pieces of data,

queries typically will result in larger amounts of data being requested.

XML-aware indices can provide a faster data retrieval mechanism when a large amount

of document data is requested. The parsing of large XML data constructs is faster than

the equivalent processing required when retrieving and then assembling this informa-

tion from a relational data source. This is another reason document-centric content is

more suitable for native XML environments.

Additionally, the XML-aware nature of native XML databases supports query technolo-

gies designed specifically for the XML representation format. This opens the door to

sophisticated query statements that would not be possible with many of the XML-

enabled relational database platforms.

erl_ch07.fm Page 275 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

276 Chapter 7 • Integrating XML and databases

7.6.4 Native XML databases for intermediary storage

One popular use for native XML repositories is to supplement application environ-

ments that already rely on relational databases. A common challenge with XML-

enabled applications is the constant conversion between relational data structures and

XML document formats. In previous chapters we explored some strategies for mitigat-

ing the performance overhead this runtime conversion process can impose, including

the use of in-memory databases for caching purposes.

If, however, you need to provide a permanent storage facility for cached, non-durable,

and document-centric XML data, then what better place than a repository specifically

designed to store XML in its native format. Figure 7.20 illustrates this architecture.

There may be situations where this architecture may even be useful for data-centric

XML documents. It really comes down to what you’re trading off. If you can take

advantage of the integrated XML schemas, then this database can act as a pre-validator

for documents that remain fairly static throughout the lifetime of the currently execut-

ing business task.

Also, if you need to cache XML formatted data for extended periods, the additional

administration features offered by native XML databases may be more attractive.

Finally, placing data in a native XML cache repository can open it up to a wide variety

Figure 7.20 A native XML database acting as a physical cache for

non-durable XML document data.

database server

XML
constructs

application server

XML
constructs

pre-assembled
XML document

native XML
database

erl_ch07.fm Page 276 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Native XML databases 277

of data access opportunities that may not exist while the data is residing in a rela-

tional database.

SUMMARY OF KEY POINTS

• Native XML databases are most suitable for the storage of document-centric XML data.

• The XML-aware indices provided by native XML databases can provide faster data

retrieval for large amounts of document data.

• Native XML databases can be positioned strategically alongside relational repositories.

erl_ch07.fm Page 277 Tuesday, February 8, 2005 9:32 PM

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

Thomas Erl is an independent consultant with XMLTC Consulting in Vancouver,

Canada. H is previous b ook , Service-Oriented Architecture: A Field Guide to Integrating

X M L and W eb Services , b ecame the top-selling b ook of 2 0 0 4 in b oth W eb S ervices and

S O A categories. This guide addresses numerous integration issues and provides strate-

gies and b est practices for transitioning toward S O A .

Thomas is a memb er of O A S I S and is active in related research efforts, such as the XML

& W eb S ervices Integration F ramework (XW I F) . H e is a speak er and instructor for pri-

vate and pub lic events and conferences, and has pub lished numerous papers, including

articles for the W eb Services Journal, W L D J , and Ap p lication D evelop m ent T rends .

F or more information, visit http://www.thomaserl.com/technology/.

A b out the A uthor

Erl_AboutAuth.qxd 6/21/05 1:42 PM Page 721

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

SOA Systems Inc. is a consulting firm actively involved in the research and development

of service-oriented architecture, service-orientation, X M L , and W eb services standards

and technology. T hrough its research and enterprise solution projects SOA Systems has

developed a recogniz ed methodology for integrating and realiz ing service-oriented con-

cepts, technology, and architecture.

F or more information, visit www.soasystems.com.

One of the consulting services provided b y SOA Systems is comprehensive SOA transi-

tion planning and the ob jective assessment of vendor technology products.

F or more information, visit www.soaplanning.com.

T he content in this b ook is the b asis for a series of SOA seminars and w ork shops devel-

oped and offered b y SOA Systems.

F or more information, visit www.soatraining.com.

Ab out SOA Systems

Erl_AboutSOA.qxd 6/21/05 1:43 PM Page 723

Sample Chapter 7 from "Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services"
by Thomas Erl. For more information visit www.serviceoriented.ws.

